Anti-GPVI Fab SAR264565 effectively blocks GPVI function in ex vivo human platelets under arterial shear in a perfusion chamber

2017 ◽  
Vol 73 (8) ◽  
pp. 949-956 ◽  
Author(s):  
Peter Florian ◽  
Peter Wonerow ◽  
Sebastian Harder ◽  
Karina Kuczka ◽  
Michel Dubar ◽  
...  
1995 ◽  
Vol 74 (05) ◽  
pp. 1244-1251 ◽  
Author(s):  
H Stormorken ◽  
H Holmsen ◽  
R Sund ◽  
K S Sakariassen ◽  
T Hovig ◽  
...  

SummaryThe Stormorken syndrome is a multifacetted syndrome including a bleeding tendency. No deviations were found in the coagulation- or fibrinolytic systems. Platelet number was low normal, and size abnormal, whereas EM findings were unremarkable. Survival time was half normal. Clot retraction was initially rapid, but clearly decreased, whereas prothrombin consumption was also initially rapid, but complete. Membrane GP’s were normal, so was AA metabolism, PI-cycle, granule storage and secretion, and c-AMP function, whereas 5-HT uptake and storage was decreased. Optical platelet aggregation was low normal with all physiological agonists. The only clearly abnormal finding was that coagulant activity was present on non stimulated platelets at the same level as kaolin-stimulated normal platelets. This indicated a platelet abnormality which should lead to a thrombogenic, not to a haemorrhagic trait. This paradox may have its origin in rheology, because when challenged with in vivo shear rates in an ex vivo perfusion chamber, platelet cohesion was abnormally low. Further studies to better delineate the membrane abnormality are underway.


1992 ◽  
Vol 67 (01) ◽  
pp. 126-130 ◽  
Author(s):  
Olivier Spertini ◽  
Jacques Hauert ◽  
Fedor Bachmann

SummaryPlatelet function defects observed in chronic alcoholics are not wholly explained by the inhibitory action of ethanol on platelet aggregation; they are not completely reproduced either in vivo by short-term ethanol perfusion into volunteers or in vitro by the addition of ethanol to platelet-rich plasma. As acetaldehyde (AcH) binds to many proteins and impairs cellular activities, we investigated the effect of this early degradation product of ethanol on platelets. AcH formed adducts with human platelets at neutral pH at 37° C which were stable to extensive washing, trichloracetic acid hydrolysis and heating at 100° C, and were not reduced by sodium borohydride. The amount of platelet adducts formed was a function of the incubation time and of the concentration of AcH in the reaction medium. At low AcH concentrations (<0.2 mM), platelet bound AcH was directly proportional to the concentration of AcH in the reaction medium. At higher concentrations (≥0.2 mM), AcH uptake by platelets tended to reach a plateau. The amount of adducts was also proportional to the number of exposures of platelets to pulses of 20 pM AcH.AcH adducts formation severely impaired platelet aggregation and shape change induced by ADP, collagen and thrombin. A positive correlation was established between platelet-bound AcH and inhibition of aggregation.SDS-PAGE analysis of AcH adducts at neutral pH demonstrated the binding of [14C]acetaldehyde to many platelet proteins. AcH adduct formation with membrane glycoproteins, cytoskeleton and enzymes might interfere with several steps of platelet activation and impair platelet aggregation.This in vitro study shows that AcH has a major inhibitory action on platelet aggregation and may account for the prolonged ex vivo inhibition of aggregation observed in chronic alcoholics even in the absence of alcoholemia.


2021 ◽  
Vol 22 (1) ◽  
pp. 424
Author(s):  
Vlad F. Avram ◽  
Imen Chamkha ◽  
Eleonor Åsander-Frostner ◽  
Johannes K. Ehinger ◽  
Romulus Z. Timar ◽  
...  

Statins are the cornerstone of lipid-lowering therapy. Although generally well tolerated, statin-associated muscle symptoms (SAMS) represent the main reason for treatment discontinuation. Mitochondrial dysfunction of complex I has been implicated in the pathophysiology of SAMS. The present study proposed to assess the concentration-dependent ex vivo effects of three statins on mitochondrial respiration in viable human platelets and to investigate whether a cell-permeable prodrug of succinate (complex II substrate) can compensate for statin-induced mitochondrial dysfunction. Mitochondrial respiration was assessed by high-resolution respirometry in human platelets, acutely exposed to statins in the presence/absence of the prodrug NV118. Statins concentration-dependently inhibited mitochondrial respiration in both intact and permeabilized cells. Further, statins caused an increase in non-ATP generating oxygen consumption (uncoupling), severely limiting the OXPHOS coupling efficiency, a measure of the ATP generating capacity. Cerivastatin (commercially withdrawn due to muscle toxicity) displayed a similar inhibitory capacity compared with the widely prescribed and tolerable atorvastatin, but did not elicit direct complex I inhibition. NV118 increased succinate-supported mitochondrial oxygen consumption in atorvastatin/cerivastatin-exposed platelets leading to normalization of coupled (ATP generating) respiration. The results acquired in isolated human platelets were validated in a limited set of experiments using atorvastatin in HepG2 cells, reinforcing the generalizability of the findings.


1992 ◽  
Vol 160 (S15) ◽  
pp. 56-60 ◽  
Author(s):  
C. Labrid ◽  
E. Mocaër ◽  
A. Kamoun

Tianeptine is a tricyclic antidepressant with an unusual chemical structure (a long lateral chain grafted on to a substituted dibenzothiazepin nucleus), and with biochemical and animal-behavioural properties which are strikingly different from those of classical tricyclics. Unlike the latter, which decrease serotonin (5-HT) uptake, acute and chronic tianeptine treatment enhances 5-HT uptake in rat brain and in rat and human platelets ex vivo. In vivo, tianeptine potentiates the depletion of rat brain 5-HT by 4-methyl-alpha-ethyl metatyramine and increases rat hippocampal 5-HIAA; 5-HT uptake inhibitors (e.g. fluoxetine) have opposite effects. On iontophoretic injection into CA1 pyramidal cells, tianeptine shortens the period of neuronal hypoactivity caused by GABA or 5-HT, whereas other tricyclics prolong it, and it enhances attention, learning, and memory in laboratory animals, while classical tricyclics have opposite effects. However, the relationships between these effects of tianeptine in animal experiments and their relevance to clinical findings remain to be determined.


Author(s):  
M. Urooj Zafar ◽  
Carlos G. Santos-Gallego ◽  
Lina Badimon ◽  
Juan J. Badimon

2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Reheman Adili ◽  
Katherine Mast ◽  
Michael Holinstat

12-lipoxygenase (12-LOX) has been demonstrated to regulate platelet function, hemostasis, and thrombosis ex vivo , supporting a key role for 12-LOX in regulation of in vivo thrombosis. While pharmacologically targeting 12-LOX in vivo has been a challenge to date, the recent development of the 12-LOX selective inhibitor, ML355, as an effective antiplatelet therapeutic in vivo was assessed. ML355 potently inhibited thrombin and other agonist-induced platelet aggregation ex vivo in washed human platelets and inhibited downstream oxylipin production of platelet 12-LOX as confirmed by Mass spectrometry analysis. Ex vivo flow chamber assays confirmed that human platelet adhesion and thrombus formation at arterial shear over collagen was attenuated in human whole blood treated with ML355 to a greater extent compared to aspirin. In vivo , PK assessment of ML355 showed reasonable 12-LOX plasma levels 12 hours following administration of ML355. FeCl 3 -induced injury of the mesenteric arterioles resulted in less stable thrombi in 12-LOX -/- mice and ML355-treated WT mice resulting in impairment of vessel occlusion. Additionally, ML355 dose-dependently inhibited laser-induced thrombus formation in the cremaster arteriole thrombosis model in WT, but not in 12-LOX -/- mice. Importantly, hemostatic plug formation and bleeding following treatment with ML355 were not affected in response to laser ablation on the saphenous vein or in a cremaster microvasculature laser-induced rupture model. Our data strongly supports 12-LOX as a key determinant of platelet reactivity in vivo and inhibition of platelet 12-LOX with ML355 may represent a new class of antiplatelet therapeutics.


2019 ◽  
Vol 20 (20) ◽  
pp. 5040 ◽  
Author(s):  
Thien Ngo ◽  
Keunyoung Kim ◽  
Yiying Bian ◽  
Hakjun Noh ◽  
Kyung-Min Lim ◽  
...  

Antiplatelet agents are important in the pharmacotherapeutic regime for many cardiovascular diseases, including thrombotic disorders. However, bleeding, the most serious adverse effect associated with current antiplatelet therapy, has led to many efforts to discover novel anti-platelet drugs without bleeding issues. Of note, shear stress-induced platelet aggregation (SIPA) is a promising target to overcome bleeding since SIPA happens only in pathological conditions. Accordingly, this study was carried out to discover antiplatelet agents selectively targeting SIPA. By screening various herbal extracts, Paeonia suffruticosa and its major bioactive constituent, paeoniflorin, were identified to have significant inhibitory effects against shear-induced aggregation in human platelets. The effects of paeoniflorin on intraplatelet calcium levels, platelet degranulation, and integrin activation in high shear stress conditions were evaluated by a range of in vitro experiments using human platelets. The inhibitory effect of paeoniflorin was determined to be highly selective against SIPA, through modulating von Willebrand Factor (vWF)-platelet glycoprotein Ib (GP Ib) interaction. The effects of paeoniflorin on platelet functions under high shear stress were confirmed in the ex vivo SIPA models in rats, showing the good accordance with the anti-SIPA effects on human platelets. Treatment with paeoniflorin significantly prevented arterial thrombosis in vivo from the dose of 10 mg/kg without prolonging bleeding time or blood clotting time in rats. Collectively, our results demonstrated that paeoniflorin can be a novel anti-platelet agent selectively targeting SIPA with an improved safety profile.


1977 ◽  
Author(s):  
K. Subbarao ◽  
B. Rucinski ◽  
A. Summers ◽  
S. Niewiarowski

The interactions of dipyridamole with α1-acid glycoprotein of plasma and with human platelets are related to inhibition of adenosine uptake by platelets. One mole of dipyridamole binds to one mole of α1-acid glycoprotein with a dissociation constant (Kd) of 1.3 μM. It was found that platelets contain both high and low affinity binding sites for the drug. The binding of dipyridamole to the high affinity sites follows a Michaelis Menten binding pattern with a Kd of 0.04 μM. Approximately 2x104 dipyridamole molecules are bound at the high affinity sites of each platelet. The lower affinity sites bind the drug with a Kd of 4 μM. In the presence of α1acid glycoprotein the binding of dipyridamole to platelets is inhibited. Correspondingly, the dipyridamole inhibition of adenosine uptake by platelets is reduced 1000-fold by α1acid glycoprotein. Binding of dipyridamole to human platelets is essential for its inhibition of adenosine uptake by platelets. Dipyridamole reduced the [14C]-ATP to [14C]-ADP ratio in the platelets. Purified α1acid glycoprotein reversed these effects of dipyridamole on adenosine metabolism of platelets in a concentration dependent manner. A correlationwas observed between the level of circulating dipyridamole in plasma and the inhibition of [14C]-adenosine uptake by platelets of PRP samples of 12 human volunteers given different amounts of dipyridamole. The in vitro and ex vivo effects of dipyridamole on the [14C]-adenosine uptake by platelets were found to be identical. Our data suggest the presence of dipyridamole binding sites in platelets that regulate adenosine transport across the cell surface.


Blood ◽  
2002 ◽  
Vol 99 (12) ◽  
pp. 4486-4493 ◽  
Author(s):  
Gregor Theilmeier ◽  
Carine Michiels ◽  
Erik Spaepen ◽  
Ingrid Vreys ◽  
Désiré Collen ◽  
...  

Platelets are thought to play a causal role during atherogenesis. Platelet-endothelial interactions in vivo and their molecular mechanisms under shear are, however, incompletely characterized. Here, an in vivo platelet homing assay was used in hypercholesterolemic rabbits to track platelet adhesion to plaque predilection sites. The role of platelet versus aortic endothelial cell (EC) activation was studied in an ex vivo flow chamber. Pathways of human platelet immobilization were detailed during in vitro perfusion studies. In rabbits, a 0.125% cholesterol diet induced no lesions within 3 months, but fatty streaks were found after 12 months. ECs at segmental arteries of 3- month rabbits expressed more von Willebrand factor (VWF) and recruited 5-fold more platelets than controls (P &lt; .05, n = 5 and 4, respectively). The 3-month ostia had an increased likelihood to recruit platelets compared to control ostia (56% versus 18%, P &lt; .0001, n = 89 and 63, respectively). Ex vivo, the adhesion of 3-month platelets to 3-month aortas was 8.4-fold increased compared to control studies (P &lt; .01, n = 7 and 5, respectively). In vitro, endothelial VWF–platelet glycoprotein (GP) Ib and platelet P-selectin– endothelial P-selectin glycoprotein ligand 1 interactions accounted in combination for 83% of translocation and 90% of adhesion (P &lt; .01, n = 4) of activated human platelets to activated human ECs. Platelet tethering was mainly mediated by platelet GPIbα, whereas platelet GPIIb/IIIa contributed 20% to arrest (P &lt; .05). In conclusion, hypercholesterolemia primes platelets for recruitment via VWF, GPIbα, and P-selectin to lesion-prone sites, before lesions are detectable.


Sign in / Sign up

Export Citation Format

Share Document