scholarly journals Amyloid formation of bovine insulin is retarded in moderately acidic pH and by addition of short-chain alcohols

2020 ◽  
Vol 49 (2) ◽  
pp. 145-153 ◽  
Author(s):  
David Bernson ◽  
Almedina Mecinovic ◽  
Md Tuhin Abed ◽  
Fredrik Limé ◽  
Per Jageland ◽  
...  

AbstractProtein aggregation and amyloid formation are associated with multiple human diseases, but are also a problem in protein production. Understanding how aggregation can be modulated is therefore of importance in both medical and industrial contexts. We have used bovine insulin as a model protein to explore how amyloid formation is affected by buffer pH and by the addition of short-chain alcohols. We find that bovine insulin forms amyloid fibrils, albeit with different rates and resulting fibril morphologies, across a wide pH range (2–7). At pH 4.0, bovine insulin displayed relatively low aggregation propensity in combination with high solubility; this condition was therefore chosen as basis for further exploration of how bovine insulin’s native state can be stabilized in the presence of short-chain alcohols that are relevant because of their common use as eluents in industrial-scale chromatography purification. We found that ethanol and isopropanol are efficient modulators of bovine insulin aggregation, providing a three to four times retardation of the aggregation kinetics at 30–35% (vol/vol) concentration; we attribute this to the formation of oligomers, which we detected by AFM. We discuss this effect in terms of reduced solvent polarity and show, by circular dichroism recordings, that a concomitant change in α-helical packing of the insulin monomer occurs in ethanol. Our results extend current knowledge of how insulin aggregates, and may, although bovine insulin serves as a simplistic model, provide insights into how buffers and additives can be fine-tuned in industrial production of proteins in general and pharmaceutical insulin in particular.

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1195 ◽  
Author(s):  
Zaida L. Almeida ◽  
Rui M. M. Brito

The aggregation of a polypeptide chain into amyloid fibrils and their accumulation and deposition into insoluble plaques and intracellular inclusions is the hallmark of several misfolding diseases known as amyloidoses. Alzheimer′s, Parkinson′s and Huntington’s diseases are some of the approximately 50 amyloid diseases described to date. The identification and characterization of the molecular species critical for amyloid formation and disease development have been the focus of intense scrutiny. Methods such as X-ray and electron diffraction, solid-state nuclear magnetic resonance spectroscopy (ssNMR) and cryo-electron microscopy (cryo-EM) have been extensively used and they have contributed to shed a new light onto the structure of amyloid, revealing a multiplicity of polymorphic structures that generally fit the cross-β amyloid motif. The development of rational therapeutic approaches against these debilitating and increasingly frequent misfolding diseases requires a thorough understanding of the molecular mechanisms underlying the amyloid cascade. Here, we review the current knowledge on amyloid fibril formation for several proteins and peptides from a kinetic and thermodynamic point of view, the structure of the molecular species involved in the amyloidogenic process, and the origin of their cytotoxicity.


2019 ◽  
Vol 20 (22) ◽  
pp. 5558
Author(s):  
Hassan Ramshini ◽  
Reza Tayebee ◽  
Alessandra Bigi ◽  
Francesco Bemporad ◽  
Cristina Cecchi ◽  
...  

Deposition of soluble proteins as insoluble amyloid fibrils is associated with a number of pathological states. There is a growing interest in the identification of small molecules that can prevent proteins from undergoing amyloid fibril formation. In the present study, a series of small aromatic compounds with different substitutions of 1,3,5-triphenylbenzene have been synthesized and their possible effects on amyloid fibril formation by hen egg white lysozyme (HEWL), a model protein for amyloid formation, and of their resulting toxicity were examined. The inhibitory effect of the compounds against HEWL amyloid formation was analyzed using thioflavin T and Congo red binding assays, atomic force microscopy, Fourier-transform infrared spectroscopy, and cytotoxicity assays, such as the 3-(4,5-Dimethylthiazol)-2,5-Diphenyltetrazolium Bromide (MTT) reduction assay and caspase-3 activity measurements. We found that all compounds in our screen were efficient inhibitors of HEWL fibril formation and their associated toxicity. We showed that electron-withdrawing substituents such as –F and –NO2 potentiated the inhibitory potential of 1,3,5-triphenylbenzene, whereas electron-donating groups such as –OH, –OCH3, and –CH3 lowered it. These results may ultimately find applications in the development of potential inhibitors against amyloid fibril formation and its biologically adverse effects.


2020 ◽  
Vol 295 (33) ◽  
pp. 11379-11387 ◽  
Author(s):  
Sara Raimondi ◽  
P. Patrizia Mangione ◽  
Guglielmo Verona ◽  
Diana Canetti ◽  
Paola Nocerino ◽  
...  

Systemic amyloidosis caused by extracellular deposition of insoluble fibrils derived from the pathological aggregation of circulating proteins, such as transthyretin, is a severe and usually fatal condition. Elucidation of the molecular pathogenic mechanism of the disease and discovery of effective therapies still represents a challenging medical issue. The in vitro preparation of amyloid fibrils that exhibit structural and biochemical properties closely similar to those of natural fibrils is central to improving our understanding of the biophysical basis of amyloid formation in vivo and may offer an important tool for drug discovery. Here, we compared the morphology and thermodynamic stability of natural transthyretin fibrils with those of fibrils generated in vitro either using the common acidification procedure or primed by limited selective cleavage by plasmin. The free energies for fibril formation were −12.36, −8.10, and −10.61 kcal mol−1, respectively. The fibrils generated via plasmin cleavage were more stable than those prepared at low pH and were thermodynamically and morphologically similar to natural fibrils extracted from human amyloidotic tissue. Determination of thermodynamic stability is an important tool that is complementary to other methods of structural comparison between ex vivo fibrils and fibrils generated in vitro. Our finding that fibrils created via an in vitro amyloidogenic pathway are structurally similar to ex vivo human amyloid fibrils does not necessarily establish that the fibrillogenic pathway is the same for both, but it narrows the current knowledge gap between in vitro models and in vivo pathophysiology.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2878
Author(s):  
Emanuelle Dantas Freitas ◽  
Celso Fidelis Moura Jr. ◽  
Jonas Kerwald ◽  
Marisa Masumi Beppu

Chitosan, a chitin-derivative polysaccharide, known for its non-toxicity, biocompatibility and biodegradability, presents limited applications due to its low solubility in neutral or basic pH medium. Quaternization stands out as an alternative to modify this natural polymer, aiming to improve its solubility over a wide pH range and, consequently, expand its range of applications. Quaternization occurs by introducing a quaternary ammonium moiety onto or outside the chitosan backbone, via chemical reactions with primary amino and hydroxyl groups, under vast experimental conditions. The oldest and most common forms of quaternized chitosan involve N,N,N-trimethyl chitosan (TMC) and N-[(2-hydroxy-3-trimethyl ammonium) propyl] chitosan (HTCC) and, more recently, quaternized chitosan by insertion of pyridinium or phosphonium salts. By modifying chitosan through the insertion of a quaternary moiety, permanent cationic charges on the polysaccharide backbone are achieved and properties such as water solubility, antimicrobial activity, mucoadhesiveness and permeability are significantly improved, enabling the application mainly in the biomedical and pharmaceutical areas. In this review, the main quaternized chitosan compounds are addressed in terms of their structure, properties, synthesis routes and applications. In addition, other less explored compounds are also presented, involving the main findings and future prospects regarding the field of quaternized chitosans.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1608
Author(s):  
Victor Marchenkov ◽  
Natalya Ryabova ◽  
Vitaly Balobanov ◽  
Anatoly Glukhov ◽  
Nelly Ilyina ◽  
...  

The development of many severe human diseases is associated with the formation of amyloid fibrils. Most of the available information on the process of amyloid formation has been obtained from studies of small proteins and peptides, wherein the features of complex proteins’ aggregation remain insufficiently investigated. Our work aimed to research the amyloid aggregation of a large model protein, bovine carbonic anhydrase B (BCAB). It has previously been demonstrated that, when exposed to an acidic pH and elevated temperature, this protein forms amyloid fibrils. Here, we show that, under these conditions and before amyloid formation, BCAB undergoes fragmentation by acid hydrolysis to give free individual peptides and associated peptides. Fragments in associates contain a pronounced secondary structure and act as the main precursor of amyloid fibrils, wherein free peptides adopt mostly unstructured conformation and form predominantly irregular globular aggregates. Reduced acidity decreases the extent of acid hydrolysis, causing BCAB to form amorphous aggregates lacking the thioflavin T binding β-structure. The presented results provide new information on BCAB amyloid formation and show the importance of protein integrity control when working even in mildly acidic conditions.


2020 ◽  
Author(s):  
Keisuke Yuzu ◽  
Naoki Yamamoto ◽  
Masahiro Noji ◽  
Masatomo So ◽  
Yuji Goto ◽  
...  

ABSTRACTAmyloid fibrils are aberrant protein aggregates associated with various amyloidoses and neurodegenerative diseases. It is recently indicated that structural diversity of amyloid fibrils often results in different pathological phenotypes including cytotoxicity and infectivity. The diverse structures are predicted to propagate by seed-dependent growth, which is one of the characteristic properties of amyloid fibrils. However, much remains unknown regarding how exactly the amyloid structures are inherited to subsequent generations by seeding reaction. Here, we investigated the behaviors of self- and cross-seeding of amyloid fibrils of human and bovine insulin in terms of thioflavin T fluorescence, morphology, secondary structure, and iodine staining. Insulin amyloid fibrils exhibited different structures depending on species, and each of which replicated in self-seeding. In contrast, gradual structural changes were observed in cross-seeding, and a new-type amyloid structure with distinct morphology and cytotoxicity was formed when human insulin was seeded with bovine insulin fibrils. Remarkably, iodine staining tracked changes in amyloid structure sensitively, and singular value decomposition (SVD) analysis of the UV-Vis absorption spectra of the fibril-bound iodine has revealed the presence of one or more intermediate metastable states during the structural changes. From these findings, we propose a propagation scheme with multistep structural changes in cross-seeding between two heterologous proteins, which is accounted for as a consequence of the rugged energy landscape of amyloid formation.


2020 ◽  
Author(s):  
Anirban Das ◽  
Tanoy Dutta ◽  
Laxmikant Gadhe ◽  
Apurba Koner ◽  
Ishu Saraogi

The misfolding and aggregation of proteins leading to amyloid formation has been linked to numerous diseases, necessitating the development of tools to monitor the fibrillation process. Here we report an intramolecular charge transfer (ICT) dye, DMNDC, as an alternative to Thioflavin-T (ThT), most commonly used for monitoring amyloid fibrils. Using insulin as a model protein, we show that DMNDC efficiently detects all stages of fibril formation, namely, nucleation, elongation, and saturation. An approximately 70 nm hypsochromic shift along with a large increase in emission intensity was observed upon binding of DMNDC to protein fibrils. The aggregation kinetics of insulin remained unaffected at excess DMNDC concentration, suggesting that DMNDC does not inhibit insulin aggregation. Additionally, the efficient cellular internalization and low toxicity of DMNDC make it highly suited for sensing and imaging of amyloid fibrils in the complex biological milieu.<br>


2020 ◽  
Author(s):  
Anirban Das ◽  
Tanoy Dutta ◽  
Laxmikant Gadhe ◽  
Apurba Koner ◽  
Ishu Saraogi

The misfolding and aggregation of proteins leading to amyloid formation has been linked to numerous diseases, necessitating the development of tools to monitor the fibrillation process. Here we report an intramolecular charge transfer (ICT) dye, DMNDC, as an alternative to Thioflavin-T (ThT), most commonly used for monitoring amyloid fibrils. Using insulin as a model protein, we show that DMNDC efficiently detects all stages of fibril formation, namely, nucleation, elongation, and saturation. An approximately 70 nm hypsochromic shift along with a large increase in emission intensity was observed upon binding of DMNDC to protein fibrils. The aggregation kinetics of insulin remained unaffected at excess DMNDC concentration, suggesting that DMNDC does not inhibit insulin aggregation. Additionally, the efficient cellular internalization and low toxicity of DMNDC make it highly suited for sensing and imaging of amyloid fibrils in the complex biological milieu.<br>


1991 ◽  
Vol 56 (12) ◽  
pp. 2791-2799 ◽  
Author(s):  
Juan A. Squella ◽  
Luis J. Nuñez-Vergara ◽  
Hernan Rodríguez ◽  
Amelia Márquez ◽  
Jose M. Rodríguez-Mellado ◽  
...  

Five N-p-phenyl substituted benzamidines were studied by DC and DP polarography in a wide pH range. Coulometric results show that the overall processes are four-electron reductions. Logarithmic analysis of the waves indicate that the process are irreversible. The influence of the pH on the polarographic parameters was also studied. A UV spectrophotometric study was performed in the pH range 2-13. In basic media some variations in the absorption bands were observed due to the dissociation of the amidine group. A determination of the pK values was made by deconvolution of the spectra. Correlations of both the electrochemical parameters and spectrophotometric pK values with the Hammett substituent constants were obtained.


Sign in / Sign up

Export Citation Format

Share Document