Allograft rejection in the mixed cell reaction system of the demosponge Suberites domuncula is controlled by differential expression of apoptotic genes

2004 ◽  
Vol 56 (8) ◽  
pp. 597-610 ◽  
Author(s):  
Matthias Wiens ◽  
Sanja Perović-Ottstadt ◽  
Isabel M. Müller ◽  
Werner E. G. Müller
1999 ◽  
Vol 277 (4) ◽  
pp. F650-F663 ◽  
Author(s):  
Anna Pavlova ◽  
Robert O. Stuart ◽  
Martin Pohl ◽  
Sanjay K. Nigam

Branching morphogenesis of the ureteric bud in response to unknown signals from the metanephric mesenchyme gives rise to the urinary collecting system and, via inductive signals from the ureteric bud, to recruitment of nephrons from undifferentiated mesenchyme. An established cell culture model for this process employs cells of ureteric bud origin (UB) cultured in extracellular matrix and stimulated with conditioned media (BSN-CM) from a metanephric mesenchymal cell line (H. Sakurai, E. J. Barros, T. Tsukamoto, J. Barasch, and S. K. Nigam. Proc. Natl. Acad. Sci. USA 94: 6279–6284, 1997.). In the presence of BSN-CM, the UB cells form branching tubular structures reminiscent of the branching ureteric bud. The pattern of gene regulation in this model of branching morphogenesis of the kidney collecting system was investigated using high-density cDNA arrays. Software and analytical methods were developed for the quantification and clustering of genes. With the use of a computational method termed “vector analysis,” genes were clustered according to the direction and magnitude of differential expression in n-dimensional log-space. Changes in gene expression in response to the BSN-CM consisted primarily of differential expression of transcription factors with previously described roles in morphogenesis, downregulation of pro-apoptotic genes accompanied by upregulation of anti-apoptotic genes, and upregulation of a small group of secreted products including growth factors, cytokines, and extracellular proteinases. Changes in expression are discussed in the context of a general model for epithelial branching morphogenesis. In addition, the cDNA arrays were used to survey expression of epithelial markers and secreted factors in UB and BSN cells, confirming the largely epithelial character of the former and largely mesenchymal character of the later. Specific morphologies (cellular processes, branching multicellular cords, etc.) were shown to correlate with the expression of different, but overlapping, genomic subsets, suggesting differences in morphogenetic mechanisms at these various steps in the evolution of branching tubules.


2009 ◽  
Vol 8 (1) ◽  
pp. 130 ◽  
Author(s):  
Nicole Pressinotti ◽  
Helmut Klocker ◽  
Georg Schäfer ◽  
Van-Duc Luu ◽  
Markus Ruschhaupt ◽  
...  

2016 ◽  
Vol 82 (7) ◽  
pp. 1992-2002 ◽  
Author(s):  
Pyung-Gang Lee ◽  
Joonwon Kim ◽  
Eun-Jung Kim ◽  
EunOk Jung ◽  
Bishnu Prasad Pandey ◽  
...  

ABSTRACT(S)-Equol, a gut bacterial isoflavone derivative, has drawn great attention because of its potent use for relieving female postmenopausal symptoms and preventing prostate cancer. Previous studies have reported on the dietary isoflavone metabolism of several human gut bacteria and the involved enzymes for conversion of daidzein to (S)-equol. However, the anaerobic growth conditions required by the gut bacteria and the low productivity and yield of (S)-equol limit its efficient production using only natural gut bacteria. In this study, the low (S)-equol biosynthesis of gut microorganisms was overcome by cloning the four enzymes involved in the biosynthesis fromSlackia isoflavoniconvertensintoEscherichia coliBL21(DE3). The reaction conditions were optimized for (S)-equol production from the recombinant strain, and this recombinant system enabled the efficient conversion of 200 μM and 1 mM daidzein to (S)-equol under aerobic conditions, achieving yields of 95% and 85%, respectively. Since the biosynthesis oftrans-tetrahydrodaidzein was found to be a rate-determining step for (S)-equol production, dihydrodaidzein reductase (DHDR) was subjected to rational site-directed mutagenesis. The introduction of the DHDR P212A mutation increased the (S)-equol productivity from 59.0 mg/liter/h to 69.8 mg/liter/h in the whole-cell reaction. The P212A mutation caused an increase in the (S)-dihydrodaidzein enantioselectivity by decreasing the overall activity of DHDR, resulting in undetectable activity for (R)-dihydrodaidzein, such that a combination of the DHDR P212A mutant with dihydrodaidzein racemase enabled the production of (3S,4R)-tetrahydrodaidzein with an enantioselectivity of >99%.


2019 ◽  
Author(s):  
Silvia Ruiz-Gaspà ◽  
Nuria Guañabens ◽  
Susana Jurado González ◽  
Marta Dubreuil ◽  
Andres Combalia ◽  
...  

AbstractOsteoporosis in advanced cholestatic and end-stage liver disease is related to low bone formation. Previous studies have demonstrated the deleterious consequences of lithocholic acid (LCA) and bilirubin on osteoblastic cells. These effects are partially or completely neutralized by ursodeoxycholic acid (UDCA). We have assessed the differential gene expression of osteoblastic cells under different culture conditions. The experiments were performed in human osteosarcoma cells (Saos-2) cultured with LCA 10 μM), bilirubin (50 μM) or UDCA (10 and 100 μM) at 2 and 24 hours. Expression of 87 genes related to bone metabolism and other signalling pathways were assessed by TaqMan micro fluidic cards. Several genes were up-regulated by LCA, most of them pro-apoptotic (BAX, BCL10, BCL2L13, BCL2L14), but also MGP (matrix Gla protein), BGLAP (osteocalcin), SPP1 (osteopontin) and CYP24A1, and down-regulated bone morphogenic protein genes (BMP3 and BMP4) and DKK1 (Dickkopf-related protein 1). Parallel effects were observed with bilirubin, which up-regulated apoptotic genes and CSF2 (colony-stimulating factor 2) and down-regulated antiapoptotic genes (BCL2 and BCL2L1), BMP3, BMP4 and RUNX2. UDCA 100 μM had specific consequences since differential expression was observed, up-regulating BMP2, BMP4, BMP7, CALCR (calcitonin receptor), SPOCK3 (osteonectin), BGLAP (osteocalcin) and SPP1 (osteopontin), and down-regulating pro-apoptotic genes. Furthermore, most of the differential expression changes induced by both LCA and bilirubin were partially or completely neutralized by UDCA. Conclusion: Our observations reveal novel target genes, whose regulation by retained substances of cholestasis may provide additional insights into the pathogenesis of osteoporosis in cholestatic and end-stage liver diseases.


2017 ◽  
Vol 101 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Guangxiang Gu ◽  
Yingjuan Huang ◽  
Chenglin Wu ◽  
Zhiyong Guo ◽  
Yi Ma ◽  
...  

Cornea ◽  
2000 ◽  
Vol 19 (Supplement 2) ◽  
pp. S133
Author(s):  
Melvin D. Trousdale ◽  
Douglas Stevenson ◽  
Harvey R. Kaslow ◽  
Joel E. Schechter ◽  
Dwight W. Warren ◽  
...  

1995 ◽  
Vol 60 (11) ◽  
pp. 989-992 ◽  
Author(s):  
STEVEN D. REID ◽  
CAROLINE R. UFF ◽  
IMRAN SAEED ◽  
JERARD ROSS ◽  
RICHARD P.M. WOOD ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document