Peculiarities of extracellular polymeric substances produced by Antarctic bacteria and their possible applications

2020 ◽  
Vol 104 (7) ◽  
pp. 2923-2934 ◽  
Author(s):  
Angelina Lo Giudice ◽  
Annarita Poli ◽  
Ilaria Finore ◽  
Carmen Rizzo
2017 ◽  
Vol 84 (4) ◽  
Author(s):  
Consolazione Caruso ◽  
Carmen Rizzo ◽  
Santina Mangano ◽  
Annarita Poli ◽  
Paola Di Donato ◽  
...  

ABSTRACTFour sponge-associated Antarctic bacteria (i.e.,Winogradskyellasp. strains CAL384 and CAL396,Colwelliasp. strain GW185, andShewanellasp. strain CAL606) were selected for the highly mucous appearance of their colonies on agar plates. The production of extracellular polymeric substances (EPSs) was enhanced by a step-by-step approach, varying the carbon source, substrate and NaCl concentrations, temperature, and pH. The EPSs produced under optimal conditions were chemically characterized, resulting in a moderate carbohydrate content (range, 15 to 28%) and the presence of proteins (range, 3 to 24%) and uronic acids (range, 3.2 to 11.9%). Chemical hydrolysis of the carbohydrate portion revealed galactose, glucose, galactosamine, and mannose as the principal constituents. The potential biotechnological applications of the EPSs were also investigated. The high protein content in the EPSs fromWinogradskyellasp. CAL384 was probably responsible for the excellent emulsifying activity toward tested hydrocarbons, with a stable emulsification index (E24) higher than those recorded for synthetic surfactants. All the EPSs tested in this work improved the freeze-thaw survival ratio of the isolates, suggesting that they may be exploited as cryoprotection agents. The addition of a sugar in the culture medium, by stimulating EPS production, also allowed isolates to grow in the presence of higher concentrations of mercury and cadmium. This finding was probably dependent on the presence of uronic acids and sulfate groups, which can act as ligands for cations, in the extracted EPSs.IMPORTANCETo date, biological matrices have never been employed for the investigation of EPS production by Antarctic psychrotolerant marine bacteria. The biotechnological potential of extracellular polymeric substances produced by Antarctic bacteria is very broad and comprises many advantages, due to their biodegradability, high selectivity, and specific action compared to synthetic molecules. Here, several interesting EPS properties have been highlighted, such as emulsifying activity, cryoprotection, biofilm formation, and heavy metal chelation, suggesting their potential applications in cosmetic, environmental, and food biotechnological fields as valid alternatives to the commercial polymers currently used.


2019 ◽  
Author(s):  
Yoshihide Furuichi ◽  
Shogo Yoshimoto ◽  
Tomohiro Inaba ◽  
Nobuhiko Nomura ◽  
Katsutoshi Hori

<p></p><p>Biofilms are used in environmental biotechnologies including waste treatment and environmentally friendly chemical production. Understanding the mechanisms of biofilm formation is essential to control microbial behavior and improve environmental biotechnologies. <i>Acinetobacter </i>sp. Tol 5 autoagglutinate through the interaction of the long, peritrichate nanofiber protein AtaA, a trimeric autotransporter adhesin. Using AtaA, without cell growth or the production of extracellular polymeric substances, Tol 5 cells quickly form an unconventional biofilm. In this study, we investigated the formation process of this unconventional biofilm, which started with cell–cell interactions, proceeded to cell clumping, and led to the formation of large cell aggregates. The cell–cell interaction was described by DLVO theory based on a new concept, which considers two independent interactions between two cell bodies and between two AtaA fiber tips forming a virtual discontinuous surface. If cell bodies cannot collide owing to an energy barrier at low ionic strengths but approach within the interactive distance of AtaA fibers, cells can agglutinate through their contact. Cell clumping proceeds following the cluster–cluster aggregation model, and an unconventional biofilm containing void spaces and a fractal nature develops. Understanding its formation process would extend the utilization of various types of biofilms, enhancing environmental biotechnologies.</p><p></p>


1998 ◽  
Vol 38 (4-5) ◽  
pp. 443-452
Author(s):  
Katsuki Kimura ◽  
Yoshimasa Watanabe ◽  
Naoki Ohkuma

Membrane filtration and oxidation of ammonia were simultaneously performed by using a rotating membrane disk module. Nitrification performance, composition of the accumulated cakes on the membrane and the filtration resistances were investigated under five different operating conditions. The filtration resistance due to the accumulated cake on the membrane was found to be dominant in this treatment method, compared to the resistance due to the micropore plugging or irreversible adherence. The cake consisted mainly of iron, humic substances and bacteria. The possibility that extracellular polymeric substances were related to the cake resistance was also shown. The composition of the cake depended on the length and the condition of operation. Accumulation of ammonia oxidizers caused by oxidation of low concentrations of ammonia (less than 1 mg/l) did not increase transmembrane pressure significantly. Therefore, the application of this treatment method for drinking water treatment is feasible. Filtration resistance due to the micropore plugging or irreversible adherence to the membrane was caused by organic substances.


2020 ◽  
Vol 21 (4) ◽  
pp. 270-286 ◽  
Author(s):  
Fazlurrahman Khan ◽  
Dung T.N. Pham ◽  
Sandra F. Oloketuyi ◽  
Young-Mog Kim

Background: The establishment of a biofilm by most pathogenic bacteria has been known as one of the resistance mechanisms against antibiotics. A biofilm is a structural component where the bacterial community adheres to the biotic or abiotic surfaces by the help of Extracellular Polymeric Substances (EPS) produced by bacterial cells. The biofilm matrix possesses the ability to resist several adverse environmental factors, including the effect of antibiotics. Therefore, the resistance of bacterial biofilm-forming cells could be increased up to 1000 times than the planktonic cells, hence requiring a significantly high concentration of antibiotics for treatment. Methods: Up to the present, several methodologies employing antibiotics as an anti-biofilm, antivirulence or quorum quenching agent have been developed for biofilm inhibition and eradication of a pre-formed mature biofilm. Results: Among the anti-biofilm strategies being tested, the sub-minimal inhibitory concentration of several antibiotics either alone or in combination has been shown to inhibit biofilm formation and down-regulate the production of virulence factors. The combinatorial strategies include (1) combination of multiple antibiotics, (2) combination of antibiotics with non-antibiotic agents and (3) loading of antibiotics onto a carrier. Conclusion: The present review paper describes the role of several antibiotics as biofilm inhibitors and also the alternative strategies adopted for applications in eradicating and inhibiting the formation of biofilm by pathogenic bacteria.


2020 ◽  
Vol 43 (11) ◽  
pp. 1951-1960
Author(s):  
Xueling Wu ◽  
Xiaoyan Wu ◽  
Xiangyu Zhou ◽  
Yichao Gu ◽  
Han Zhou ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 546
Author(s):  
Pilar Sabuquillo ◽  
Jaime Cubero

Xanthomonasarboricola pv. pruni (Xap) causes bacterial spot of stone fruit and almond, an important plant disease with a high economic impact. Biofilm formation is one of the mechanisms that microbial communities use to adapt to environmental changes and to survive and colonize plants. Herein, biofilm formation by Xap was analyzed on abiotic and biotic surfaces using different microscopy techniques which allowed characterization of the different biofilm stages compared to the planktonic condition. All Xap strains assayed were able to form real biofilms creating organized structures comprised by viable cells. Xap in biofilms differentiated from free-living bacteria forming complex matrix-encased multicellular structures which become surrounded by a network of extracellular polymeric substances (EPS). Moreover, nutrient content of the environment and bacterial growth have been shown as key factors for biofilm formation and its development. Besides, this is the first work where different cell structures involved in bacterial attachment and aggregation have been identified during Xap biofilm progression. Our findings provide insights regarding different aspects of the biofilm formation of Xap which improve our understanding of the bacterial infection process occurred in Prunus spp and that may help in future disease control approaches.


2021 ◽  
Vol 299 ◽  
pp. 15-34
Author(s):  
Ming Zhang ◽  
Caroline L. Peacock ◽  
Peng Cai ◽  
Ke-Qing Xiao ◽  
Chenchen Qu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document