Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface of Saccharomyces cerevisiae by fluorometric and confocal laser scanning microscopic analyses

2001 ◽  
Vol 55 (4) ◽  
pp. 471-475 ◽  
Author(s):  
S. Shibasaki ◽  
M. Ueda ◽  
T. Iizuka ◽  
M. Hirayama ◽  
Y. Ikeda ◽  
...  
2002 ◽  
Vol 15 (2) ◽  
pp. 172-179 ◽  
Author(s):  
Anastasia L. Lagopodi ◽  
Arthur F. J. Ram ◽  
Gerda E. M. Lamers ◽  
Peter J. Punt ◽  
Cees A. M. J. J. Van den Hondel ◽  
...  

The fungus Fusarium oxysporum f. sp. radicis-lycopersici is the causal agent of tomato foot and root rot disease. The green fluorescent protein (GFP) was used to mark this fungus in order to visualize and analyze the colonization and infection processes in vivo. Transformation of F. oxysporum f. sp. radicis-lycopersici was very efficient and gfp expression was stable for at least nine subcultures. Microscopic analysis of the transformants revealed homogeneity of the fluorescent signal, which was clearly visible in the hyphae as well as in the chlamydospores and conidia. To our knowledge, this is the first report in which this is shown. The transformation did not affect the pathogenicity. Using confocal laser scanning microscopy, colonization, infection, and disease development on tomato roots were visualized in detail and several new aspects of these processes were observed, such as (i) the complete colonization pattern of the tomato root system; (ii) the very first steps of contact between the fungus and the host, which takes place at the root hair zone by mingling and by the attachment of hyphae to the root hairs; (iii) the preferential colonization sites on the root surface, which are the grooves along the junctions of the epidermal cells; and (iv) the absence of specific infection sites, such as sites of emergence of secondary roots, root tips, or wounded tissue, and the absence of specific infection structures, such as appressoria. The results of this work prove that the use of GFP as a marker for F. oxysporum f. sp. radicis-lycopersici is a convenient, fast, and effective approach for studying plant-fungus interactions.


2008 ◽  
Vol 74 (20) ◽  
pp. 6385-6396 ◽  
Author(s):  
Sung-Yong Hong ◽  
John E. Linz

ABSTRACT Aflatoxin, a mycotoxin synthesized by Aspergillus spp., is among the most potent naturally occurring carcinogens known. Little is known about the subcellular organization of aflatoxin synthesis. Previously, we used transmission electron microscopy and immunogold labeling to demonstrate that the late aflatoxin enzyme OmtA localizes primarily to vacuoles in fungal cells on the substrate surface of colonies. In the present work, we monitored subcellular localization of Ver-1 in real time in living cells. Aspergillus parasiticus strain CS10-N2 was transformed with plasmid constructs that express enhanced green fluorescent protein (EGFP) fused to Ver-1. Analysis of transformants demonstrated that EGFP fused to Ver-1 at either the N or C terminus functionally complemented nonfunctional Ver-1 in recipient cells. Western blot analysis detected predominantly full-length Ver-1 fusion proteins in transformants. Confocal laser scanning microscopy demonstrated that Ver-1 fusion proteins localized in the cytoplasm and in the lumen of up to 80% of the vacuoles in hyphae grown for 48 h on solid media. Control EGFP (no Ver-1) expressed in transformants was observed in only 13% of the vacuoles at this time. These data support a model in which middle and late aflatoxin enzymes are synthesized in the cytoplasm and transported to vacuoles, where they participate in aflatoxin synthesis.


2013 ◽  
Vol 76 (7) ◽  
pp. 1145-1151 ◽  
Author(s):  
VICENTE M. GÓMEZ-LÓPEZ ◽  
ALICIA MARÍN ◽  
ANA ALLENDE ◽  
LARRY R. BEUCHAT ◽  
MARÍA I. GIL

Internalization of foodborne pathogens in fruits and vegetables is an increasing safety concern. The aim of this research was to assess the potential for internalization of an enteric pathogen (Salmonella enterica serotype Typhimurium) in a leafy vegetable (baby spinach) during washing as influenced by three postharvest handling conditions: (i) illumination, (ii) negative temperature differential, and (iii) relative humidity (RH). To compare these potential postharvest handling conditions, leaves were exposed to different levels of illumination (0, 1,000, and 2,000 lx), temperature differential (5, 11, 14, 20, and 26uC), and RH (99, 85, and 74%) for a short time before or during washing. Washing of baby spinach was carried out in water containing green fluorescent protein–tagged Salmonella Typhimurium (6.5 log CFU/ml) at 5uC for 2 min, followed by surface disinfection with chlorine (10,000 μg/ml) for 1 min, two rinses in water for 10 s, and spin drying for 15 s. Internalization was assessed by enumerating the pathogen on Salmonella-Shigella agar and by confocal laser scanning microscopy. Illumination of spinach leaves before and during washing and a negative temperature differential during washing did not significantly (P > 0.05) increase the number of internalized bacteria. However, exposure of leaves to low-RH conditions before washing, which reduced the tissue water content, decreased internalization of Salmonella compared with internalization in baby spinach exposed to high RH (P ≤ 0.05). Green fluorescent protein–tagged Salmonella Typhimurium was visualized by confocal laser scanning microscopy at a depth of up to 30 μm beneath the surface of spinach leaves after exposure to a high inoculum level (8 log CFU/ml) for an extended time (2 h). Results show that internalization of Salmonella into baby spinach leaves can occur but can be minimized under specific postharvest handling conditions such as low RH.


2008 ◽  
Vol 71 (2) ◽  
pp. 397-401 ◽  
Author(s):  
MICHELLE D. DANYLUK ◽  
MARIA T. BRANDL ◽  
LINDA J. HARRIS

The ability of Salmonella to migrate from an external aqueous environment through the almond hull and shell, and to colonize the kernel, was evaluated in two ways. First, the outer surface of shell halves from five varieties of almonds that differed in shell hardness were placed in contact with a suspension of Salmonella enterica serovar Enteritidis phage type 30 for 24hat24°C. Salmonella Enteritidis was isolated from the inside of these almond shells in 46 and 100% of the samples, by direct swabbing of the inner surface of the shell and by enrichment from the swab, respectively. These findings suggested that hardness of the shell is not a significant factor in the migration of the pathogen through that tissue. In addition, both motile and nonmotile strains of S. enterica serovar Typhimurium migrated through the almond shells to the same extent under the conditions of this assay, indicating that bacterial migration through the wet shell may be a passive process. Second, whole almonds (intact hull, shell, and kernel) were soaked for 24 to 72 h at 24°C in a suspension of Salmonella Enteritidis phage type 30 labeled with the green fluorescent protein. Green fluorescent protein–labeled Salmonella cells were observed on the outer and inner surfaces of both the almond hull and shell, and on the kernel, by confocal laser scanning microscopy. Our data provide direct evidence that wet conditions allow for Salmonella migration through the hull and shell and onto the almond kernel, thus providing a means by which almond kernels may become contaminated in the field.


1999 ◽  
Vol 190 (4) ◽  
pp. 509-522 ◽  
Author(s):  
Thierry Vasselon ◽  
Eric Hailman ◽  
Rolf Thieringer ◽  
Patricia A. Detmers

Lipopolysaccharide (LPS) fluorescently labeled with boron dipyrromethane (BODIPY) first binds to the plasma membrane of CD14-expressing cells and is subsequently internalized. Intracellular LPS appears in small vesicles near the cell surface and later in larger, punctate structures identified as the Golgi apparatus. To determine if membrane (m)CD14 directs the movement of LPS to the Golgi apparatus, an mCD14 chimera containing enhanced green fluorescent protein (mCD14–EGFP) was used to follow trafficking of mCD14 and BODIPY–LPS in stable transfectants. The chimera was expressed strongly on the cell surface and also in a Golgi complex–like structure. mCD14–EGFP was functional in mediating binding of and responses to LPS. BODIPY–LPS presented to the transfectants as complexes with soluble CD14 first colocalized with mCD14–EGFP on the cell surface. However, within 5–10 min, the BODIPY–LPS distributed to intracellular vesicles that did not contain mCD14–EGFP, indicating that mCD14 did not accompany LPS during endocytic movement. These results suggest that monomeric LPS is transferred out of mCD14 at the plasma membrane and traffics within the cell independently of mCD14. In contrast, aggregates of LPS were internalized in association with mCD14, suggesting that LPS clearance occurs via a pathway distinct from that which leads to signaling via monomeric LPS.


2010 ◽  
Vol 100 (2) ◽  
pp. 134-142 ◽  
Author(s):  
Robert Czajkowski ◽  
Waldo J. de Boer ◽  
Henk Velvis ◽  
Jan M. van der Wolf

Colonization of potato plants by soilborne, green fluorescent protein (GFP)-tagged Dickeya sp. IPO2254 was investigated by selective plating, epifluorescence stereo microscopy (ESM), and confocal laser scanning microscopy (CLSM). Replicated experiments were carried out in a greenhouse using plants with an intact root system and plants from which ca. 30% of the lateral roots was removed. One day after soil inoculation, adherence of the pathogen on the roots and the internal colonization of the plants were detected using ESM and CLSM of plant parts embedded in an agar medium. Fifteen days post-soil inoculation, Dickeya sp. was found on average inside 42% of the roots, 13% of the stems, and 13% of the stolons in plants with undamaged roots. At the same time-point, in plants with damaged roots, Dickeya sp. was found inside 50% of the roots, 25% of the stems, and 25% of the stolons. Thirty days postinoculation, some plants showed true blackleg symptoms. In roots, Dickeya sp. was detected in parenchyma cells of the cortex, both inter- and intracellularly. In stems, bacteria were found in xylem vessels and in protoxylem cells. Microscopical observations were confirmed by dilution spread-plating the plant extracts onto agar medium directly after harvest. The implications of infection from soilborne inoculum are discussed.


2001 ◽  
Vol 183 (15) ◽  
pp. 4636-4642 ◽  
Author(s):  
MacKenzie Distler ◽  
Ajit Kulkarni ◽  
Rajendra Rai ◽  
Terrance G. Cooper

ABSTRACT Four GATA family DNA binding proteins mediate nitrogen catabolite repression-sensitive transcription in Saccharomyces cerevisiae. Gln3p and Gat1p are transcriptional activators, while Dal80p and Deh1p repress Gln3p- and Gat1p-mediated transcription by competing with these activators for binding to DNA. Strong Dal80p binding to DNA is thought to result from C-terminal leucine zipper-mediated dimerization. Many Dal80p binding site-homologous sequences are relatively evenly distributed across the S. cerevisiae genome, raising the possibility that Dal80p might be able to “stain” DNA. We demonstrate that cells containing enhanced green fluorescent protein-Dal80p (EGFP-Dal80p) exhibit up to 16 fluorescent foci that colocalize with DAPI (4′,6′-diamidino-2-phenylindole)-positive material and follow DNA movement through the cell cycle, suggesting that EGFP-Dal80p may indeed be useful for monitoring yeast chromosomes in live cells and in real time.


1999 ◽  
Vol 65 (10) ◽  
pp. 4646-4651 ◽  
Author(s):  
Bo Normander ◽  
Niels B. Hendriksen ◽  
Ole Nybroe

ABSTRACT The gfp-tagged Pseudomonas fluorescensbiocontrol strain DR54-BN14 was introduced into the barley rhizosphere. Confocal laser scanning microscopy revealed that the rhizoplane populations of DR54-BN14 on 3- to 14-day-old roots were able to form microcolonies closely associated with the indigenous bacteria and that a majority of DR54-BN14 cells appeared small and almost coccoid. Information on the viability of the inoculant was provided by a microcolony assay, while measurements of cell volume, the intensity of green fluorescent protein fluorescence, and the ratio of dividing cells to total cells were used as indicators of cellular activity. At a soil moisture close to the water-holding capacity of the soil, the activity parameters suggested that the majority of DR54-BN14 cells were starving in the rhizosphere. Nevertheless, approximately 80% of the population was either culturable or viable but nonculturable during the 3-week incubation period. No impact of root decay on viability was observed, and differences in viability or activity among DR54-BN14 cells located in different regions of the root were not apparent. In dry soil, however, the nonviable state of DR54-BN14 was predominant, suggesting that desiccation is an important abiotic regulator of cell viability.


Sign in / Sign up

Export Citation Format

Share Document