Added value of MRI to X-ray in guiding the extent of surgical resection in diabetic forefoot osteomyelitis: a review of pathologically proven, surgically treated cases

2018 ◽  
Vol 48 (3) ◽  
pp. 405-411 ◽  
Author(s):  
Micah Cohen ◽  
Brett Cerniglia ◽  
Tetyana Gorbachova ◽  
Jay Horrow
Author(s):  
E.M.B.P. Reuling ◽  
D.D. Naves ◽  
K.J. Hartemink ◽  
E.H.F.M. van der Heijden ◽  
P.W. Plaisier ◽  
...  

2014 ◽  
Vol 47 (6) ◽  
pp. 1882-1888 ◽  
Author(s):  
J. Hilhorst ◽  
F. Marschall ◽  
T. N. Tran Thi ◽  
A. Last ◽  
T. U. Schülli

Diffraction imaging is the science of imaging samples under diffraction conditions. Diffraction imaging techniques are well established in visible light and electron microscopy, and have also been widely employed in X-ray science in the form of X-ray topography. Over the past two decades, interest in X-ray diffraction imaging has taken flight and resulted in a wide variety of methods. This article discusses a new full-field imaging method, which uses polymer compound refractive lenses as a microscope objective to capture a diffracted X-ray beam coming from a large illuminated area on a sample. This produces an image of the diffracting parts of the sample on a camera. It is shown that this technique has added value in the field, owing to its high imaging speed, while being competitive in resolution and level of detail of obtained information. Using a model sample, it is shown that lattice tilts and strain in single crystals can be resolved simultaneously down to 10−3° and Δa/a= 10−5, respectively, with submicrometre resolution over an area of 100 × 100 µm and a total image acquisition time of less than 60 s.


2018 ◽  
Vol 36 (5) ◽  
pp. 436-444 ◽  
Author(s):  
Xue Zhang ◽  
Hengxiang Li ◽  
Qing Cao ◽  
Li’e Jin ◽  
Fumeng Wang

The managing and recycling of waste tires has become a worldwide environmental challenge. Among the different disposal methods for waste tires, pyrolysis is regarded as a promising route. How to effectively enhance the added value of pyrolytic residue (PR) from waste tires is a matter of great concern. In this study, the PRs were treated with hydrochloric and hydrofluoric acids in turn under ultrasonic waves. The removal efficiency for the ash and sulfur was investigated. The pyrolytic carbon black (PCB) obtained after treating PR with acids was analyzed by X-ray fluorescence spectrophotometry, Fourier transform infrared spectrometry, X-ray diffractometry, laser Raman spectrometry, scanning electron microscopy, thermogravimetric (TG) analysis, and physisorption apparatus. The properties of PCB were compared with those of commercial carbon black (CCB) N326 and N339. Results showed PRs from waste tires were mainly composed of carbon, sulfur, and ash. The carbon in PCB was mainly from the CCB added during tire manufacture rather than from the pyrolysis of pure rubbers. The removal percentages for the ash and sulfur of PR are 98.33% (from 13.98 wt % down to 0.24 wt %) and 70.16% (from 1.81 wt % down to 0.54 wt %), respectively, in the entire process. The ash was mainly composed of metal oxides, sulfides, and silica. The surface properties, porosity, and morphology of the PCB were all close to those of N326. Therefore, PCB will be a potential alternative of N326 and reused in tire manufacture. This route successfully upgrades PR from waste tires to the high value-added CCB and greatly increases the overall efficiency of the waste tire pyrolysis industry.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3508
Author(s):  
Rosa Sun ◽  
Hadleigh Cuthbert ◽  
Colin Watts

Gliomas are central nervous systems tumours which are diffusely infiltrative and difficult to treat. The extent of surgical resection is correlated with improved outcomes, including survival and disease-free progression. Cancerous tissue can be directly visualised intra-operatively under fluorescence by administration of 5-aminolevulinic acid to the patient. The adoption of this technique has allowed surgeons worldwide to achieve greater extents of resection, with implications for improved prognosis. However, there are practical limitations to use of 5-aminolevulinic acid. New adjuncts in the field of fluorescence-guided surgery aim to improve recognition of the interface between tumour and brain with the objective of improving resection and patient outcomes.


2021 ◽  
Vol 15 (3) ◽  
Author(s):  
A. Pfeil ◽  
L. Barbé ◽  
F. Geiskopf ◽  
R. L. Cazzato ◽  
P. Renaud

Abstract Biopsies for personalized cancer care can be performed with cone beam computed tomography (CBCT) guidance, but manual needle manipulation remains an issue due to X-ray exposure to physicians. Modern CBCT scanners integrate today real-time imaging and software assistance for needle planning. In this paper, these available features are exploited to design a novel device offering an intermediate level of assistance between simple passive mechanical devices of limited efficiency, and advanced robotic devices requiring adapted procedure workflows. Our resulting system is built to limit its impact on the current manual practice. It is patient-mounted and provides remote control of needle orientation and insertion. A multilayer phantom is specifically developed to reproduce interactions between the needle and soft abdominal tissues. It is used to experimentally evaluate the device added value by comparing assisted versus manual needle insertions. The device is shown to help reducing X-ray exposure by a factor 4, without impacting the accuracy obtained manually.


Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 115 ◽  
Author(s):  
Deeb Abu Fara ◽  
Linda Al-Hmoud ◽  
Iyad Rashid ◽  
Babur Z. Chowdhry ◽  
Adnan Badwan

Chitin has been investigated in the context of finding new excipients suitable for direct compression, when subjected to roller compaction. Ball milling was concurrently carried out to compare effects from different energy or stress-inducing techniques. Samples of chitin powders (raw, processed, dried and humidified) were compared for variations in morphology, X-ray diffraction patterns, densities, FT-IR, flowability, compressibility and compactibility. Results confirmed the suitability of roller compaction to convert the fluffy powder of raw chitin to a bulky material with improved flow. X-ray powder diffraction studies showed that, in contrast to the high decrease in crystallinity upon ball milling, roller compaction manifested a slight deformation in the crystal lattice. Moreover, the new excipient showed high resistance to compression, due to the high compactibility of the granules formed. This was correlated to the significant extent of plastic deformation compared to the raw and ball milled forms of chitin. On the other hand, drying and humidification of raw and processed materials presented no added value to the compressibility and compactibility of the directly compressed excipient. Finally, compacted chitin showed direct compression similarity with microcrystalline cellulose when formulated with metronidazole (200 mg) without affecting the immediate drug release action of the drug.


2018 ◽  
Vol 792 ◽  
pp. 133-139 ◽  
Author(s):  
Toapanta Germania ◽  
Caterine Donoso ◽  
María José Cárdenas ◽  
Amón Bolívar ◽  
Vladimir Ortiz

Spent catalysts contain metals that have a high added value. From all metals, lanthanum has attracted a lot of attention due to the growing demand in the high-tech. The spent catalyst of the hydrotreatment unit is a material composed of lanthanum-enriched matrix of amorphous aluminosilicates. The experiment was carried out with a spent catalyst with a constant particle size of 90 μm. The treatments were obtained applying of two level factorial design to investigate the effect of following factors: temperature (20 - 60 °C), nitric acid concentration (3 - 6 M), leaching time (1 - 4 h) and percent solids (10 - 20 %). The research is carried out in two steps process: pretreatment of the catalyst and leaching with nitric acid. The leaching results show a yield of lanthanum of 99.44% using the following conditions: temperature (20 °C), nitric acid concentration (3M), leaching time (1 h), percent solids (20%) and 300 rpm. The principal analysis of the spent catalyst was carried out using the X-Ray Fluorescence (XRF) technique, 3.08%, while the percentage of lanthanum recovery in the extract, washing and refining was carried out using the Inductive Coupling Plasma (ICP) technique.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 621 ◽  
Author(s):  
José Balbuena ◽  
Luis Sánchez ◽  
Manuel Cruz-Yusta

An important problem, which must be solved, is the accumulation of industrial waste in landfills. Science has an obligation to transform this waste into new products and, if possible, with high added value. In this sense, we propose the valorization of the waste which is generated in the steel lamination process (HSL) through its conversion into a new material with photocatalytic activity which is suitable for use as an additive to obtain a self-cleaning construction material. The valorization of steel husk lamination waste is achieved through a grinding process, which allows the sample to be homogenized, in size, without altering its phase composition, and a thermal treatment that turns it into iron oxide, which acts as a photocatalyst. These residues, before and after treatment, were characterized by different techniques such as PXRD (Powder X-Ray Diffraction), TGA (Thermogravimetric Analysis), SBET (Specific surface area, Brunauer-Emmett-Teller), SEM (Scanning Electron Microscopy) and Diffuse reflectance (DR). MB and RhB tests show that this material is capable of self-cleaning, both of the material itself and when it is incorporated into a construction material (mortar). In addition, the NOx gas elimination test shows that it is also capable of acting on greenhouse gases such as NOx.


Sign in / Sign up

Export Citation Format

Share Document