Influence of silane coupling agent on bound rubber formation of NR/SBR blend compounds reinforced with carbon black

2016 ◽  
Vol 73 (12) ◽  
pp. 3453-3464 ◽  
Author(s):  
Sung-Seen Choi ◽  
Chae Eun Son
1999 ◽  
Vol 72 (2) ◽  
pp. 398-409 ◽  
Author(s):  
Ajay K. Manna ◽  
P. P. De ◽  
D. K. Tripathy ◽  
S. K. De ◽  
M. K. Chatterjee

Abstract Results of bound rubber determination, Monsanto rheometry, solvent swelling studies and measurement of physical properties reveal that high temperature molding of epoxidized natural rubber (ENR) filled with intermediate super abrasion furnace (ISAF) carbon black and surface oxidized ISAF carbon black, in the presence of silane coupling agent, namely, N-(4-vinylbenzyl)-N′-[3-(trimethoxysilyl)propyl]ethane-1,2-diamine monoHCl salt, results in crosslinking of the rubber phase, even in the absence of the vulcanizing agents. Infrared spectroscopic studies show formation of silyl ether, in the case of ISAF carbon black, whereas the oxidized grade forms both silyl ether as well as silyl ester and amide linkage. Oxidation of ISAF carbon black causes an increase in the extent of coupling bond formation.


2002 ◽  
Vol 75 (3) ◽  
pp. 527-548 ◽  
Author(s):  
John T. Byers

Abstract Strong demands for lower rolling resistance tires in Europe led to the introduction of a new filler system for auto tire treads in the early 1990s. Silica, in combination with a silane coupling agent, was used as the primary filler system despite the increased costs compared to carbon black. The adoption of silica/silane treads has been slower outside of Europe, but some conversion to silica/silane or alternative filler blends has taken place in North America and Japan. This paper is a review of the many reports related to the silica/silane filler system, as well as alternative approaches — including new carbon blacks — to lower rolling resistance, that have been generated since the introduction of the “green tire” concept in the early 1990s.


2005 ◽  
Vol 21 (3) ◽  
pp. 231-242 ◽  
Author(s):  
S.L. Agrawal ◽  
S.K. Mandot ◽  
N. Mandal ◽  
S. Bandyopadhyay ◽  
R. Mukhopadhyay ◽  
...  

Tyre manufacturers are continually developing energy efficient, low rolling resistance tyres, using more and more naturally occurring materials, with minimum depletion of petroleum/natural resources. Of all the components of a typical tyre, the tread component contributes most to rolling resistance properties. So continuous efforts are in progress around the globe to develop suitable tread compounds in order to fulfil the above criteria with different filler combinations, including treated fillers. In the present study, the effect of a naturally occurring coupling agent, yeast, was investigated in the context of a corn – carbon black filler system, and the results were compared with those for corn powder treated with a silane coupling agent – carbon black system in a radial passenger tyre tread compound. The yeast increased polymer-filler interaction significantly by modifying the corn surface, giving rise to optimum properties for the tread compound.


1987 ◽  
Vol 60 (4) ◽  
pp. 606-617 ◽  
Author(s):  
Luis González Hernández ◽  
Luis M. Ibarra Rueda ◽  
Celia Chamorro Antón

Abstract The natural magnesium silicate, sepiolite (trade name Pansil), can partially substitute (up to 30%) for carbon black without important losses in physical properties and occasionally can improve them. In the NR-based compounds, as the substitution takes place, vulcanization times and Mooney viscosities decrease. Tear and abrasion resistances are lower. The same effects are observed in the SBR-based compounds, though in this case, the addition of a silane coupling agent (Silane A-189) counteracts the negative effects of the sepiolite, and the obtained values are clearly better than those with only carbon black. According to tan δ behavior in truck tire tread compounds, this filler type gives a higher wet grip resistance, but rolling resistance would be adversely affected by its use, though the presence of a silane coupling agent diminishes these effects. On the contrary, in passenger tire tread compounds, the partial substitution for carbon black seems to increase the wet resistance too, without a pronounced damage in rolling resistance. In this case, the addition of the silane coupling agent produces an increase in wet skid resistance and a decrease in rolling resistance. Based on laboratory tests, rolling resistance increases in all cases, mainly when the sepiolite was modified with silane. Wet skid resistance showed no variations. Clearly, it would be desirable to confirm our observations by an actual tire test.


2012 ◽  
Vol 85 (2) ◽  
pp. 277-294 ◽  
Author(s):  
W. Kaewsakul ◽  
K. Sahakaro ◽  
W. K. Dierkes ◽  
J. W. M. Noordermeer

Abstract The dump temperature and mixing interval between rubber, silica, and silane coupling agent for silica-filled natural rubber (NR) tire tread compounds using bis-triethoxysilylpropyl tetrasulfide (TESPT) as silane were optimized. The dump temperature turns out to be the key parameter governing the properties of the silica-filled NR compounds. The increase in viscosity of the compounds by changing the dump temperature from 100 to 150 °C indicates that inevitably some cross-linking of NR occurs by sulfur contained in TESPT, simultaneous with the silanization reaction between silica and silane. However, the viscosity decreases again when dump temperatures above 150 °C are applied, indicating a dominant occurrence of degradation of the NR molecules. The results are in good agreement with bound rubber contents. The overall properties indicate that a dump temperature in the range of 135–150 °C and a silica–silane–rubber mixing interval of 10 min are the most appropriate mixing conditions for silica-filled NR compounds with TESPT as coupling agent.


2015 ◽  
Vol 88 (3) ◽  
pp. 359-372 ◽  
Author(s):  
S. Salina Sarkawi ◽  
Wilma K. Dierkes ◽  
Jacques W. M. Noordermeer

ABSTRACT A good dispersion of silica in a rubber vulcanizate is important as it influences the filler-to-rubber interaction and consequently the final properties. This article presents an investigation into the morphology of silica-reinforced natural rubber (NR) in the presence and absence of a silane coupling agent, bis(triethoxysilylpropyl) tetrasulfide (TESPT). Micro- and nano-dispersion morphologies of silica in NR and deproteinized natural rubber (DPNR) are studied by using atomic force microscopy (AFM). Using a special network visualization technique based on transmission electron microscopy (TEM), insight into the silica and rubber interaction in the NR and DPNR is gained. In the absence of silane, vacuoles around the silica particles are formed as a result of a weak filler–polymer interaction, whereas the presence of silane leads to strong filler-to-rubber bonding, which prevents formation of vacuoles. Improvement of the micro-dispersion of silica in the NR and DPNR vulcanizates with the use of TESPT is observed from AFM phase imaging. The correlation between the filler-to-rubber interaction as analyzed by TEM and AFM and bound rubber contents as well as the Payne effect is discussed.


2012 ◽  
Vol 496 ◽  
pp. 34-37 ◽  
Author(s):  
Jie Sheng Liu ◽  
Dong Lai Li ◽  
Jun Yu ◽  
Zong Wang Zhang

Silica fillers are well known to improve the mechanical properties of elastomers.Nevertheless, the silica filler particles tend to aggregate and affect the properties of the elastomer. In the present study, the silica filler was modified by silane coupling agent (A-151) in order to improve the dispersion of the filler in silicone rubber. The composites samples added with surface treated silica filler was characterized by FT-IR, bound rubber, and fluorescent microscope with that reinforced by the unmodified filler as a comparison. FT-IR results evidences the successful surface modified by silane coupling agent. Bound rubber contents of the origin silica filler are much lower than that of the silica filler with the silane coupling agent treatment. The modified silica-filled shows a better dispersion than that of the origin silica filler and the agglomeration of filler occurs in the unmodified silica-filler compounds.


Sign in / Sign up

Export Citation Format

Share Document