Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa

2011 ◽  
Vol 30 (8) ◽  
pp. 1475-1483 ◽  
Author(s):  
Fenqin Zhang ◽  
Hongxiao Zhang ◽  
Yan Xia ◽  
Guiping Wang ◽  
Langlai Xu ◽  
...  
2021 ◽  
Author(s):  
Mereen Nizar ◽  
Kanval Shaukat ◽  
Noreen Zahra ◽  
Abdul Samad ◽  
Mohammad Bilal Hafeez ◽  
...  

Abstract Cadmium (Cd+2) is a potentially toxic element that inhibits growth and development of several species of plants along with Silybum marianum (L.) Gaertn which is an essential medicinal plant belonging to family Asteraceae. The exogenous application with 0.25µM Salicylic acid (SA) and 10µM hydrogen peroxide (H2O2) to ameliorate harmful effects of cadmium (500 µM) on milk thistle were studied that were grown at two different ecological zones of Balochistan province of Pakistan i.e. Quetta (Qta) and Turbat (Tbt). The design of experiment was Randomized Complete Block Design (RCBD) with three replicates. Application of SA and H2O2, priming (P), Foliar spray (FS) and combinational treatments (P+FS) were highly helpful in alleviating the negative role of cadmium toxicity. The essential nutrients i.e. nitrate (NO3-), calcium (Ca2+) and potassium (K) were affected by Cd+2 induced toxicity however, the substantial role of SA and H2O2 widely helped to reduce the cadmium stress and boosted up the plant nutrients content. In a nutshell, exogenous treatments of SA and H2O2 enhanced the yield potential along with highest silymarin contents in milk thistle seeds which is of prime significance for its medicinal importance in treatment of liver diseases. The data obtained in this study highly recommend the priming and foliar spray of SA and H2O2 on milk thistle plants, as the best solution to alleviative the cadmium toxicity which will ultimately leads to better growth and yield of the plants.


2015 ◽  
Vol 90 (1) ◽  
pp. 83-91 ◽  
Author(s):  
M. Semida Wael ◽  
M. Rady Mostafa ◽  
A. Abd El-Mageed Taia ◽  
M. Howladar Saad ◽  
T. Abdelhamid Magdi

2015 ◽  
Vol 90 (1) ◽  
pp. 83-91 ◽  
Author(s):  
M. Semida Wael ◽  
M. Rady Mostafa ◽  
A. Abd El-Mageed Taia ◽  
M. Howladar Saad ◽  
T. Abdelhamid Magdi

Author(s):  
Muhammad Mazhar Iqbal ◽  
Ijaz Ahmad ◽  
Shahzad Maqsood Ahmed Basra ◽  
Abu Baker Ijaz ◽  
Zahid Hassan Tarar ◽  
...  

2021 ◽  
Vol 49 (2) ◽  
pp. 12303
Author(s):  
Imran KHAN ◽  
Mahmoud F. SELEIMAN ◽  
Muhammad U. CHATTHA ◽  
Rewaa S. JALAL ◽  
Faisal MAHMOOD ◽  
...  

Cadmium (Cd) accumulation is an emerging environmental hazard and has detrimental effects on plant growth and development. Salicylic acid (SA) is a well-known plant growth regulator that can initiate various molecular pathways to ameliorate Cd toxicity. The experiment was executed to scrutinize the mediatory role of SA to accelerate the defensive mechanism of mung bean in response to Cd stress. Mung bean plants were exposed to 0, 5, 10 and 15 mg Cd kg-1 of soil. Exogenous application of SA 0, 10-6 and 10-3 M was added prior flowering. Results exhibited that Cd stress considerably reduced the growth-related attributes i.e. shoot length, root length, fresh and dry biomass, total soluble protein, total amino acids, relative water contents and photosynthetic pigments. Cadmium stress showed a significant increase in antioxidants levels such as peroxidase (POD), ascorbate peroxidase (APX), ascorbic acid (AsA), and catalase (CAT) and promoted the accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents. However, exogenously applied SA significantly improved plant biomass and photosynthetic pigments under Cd stress. Moreover, SA improved the defensive system by enhancing antioxidants’ activities under the increasing concentration of Cd stress. Furthermore, SA reduced the Cd uptake, membrane damage and, H2O2 and MDA accumulation. The study's findings concluded that exogenous-applied SA enhanced plant growth, promoted the antioxidant activities, and reduced the oxidative damage in mung bean seedlings under Cd stress.


2009 ◽  
Vol 329 (1-2) ◽  
pp. 327-337 ◽  
Author(s):  
Yun-Yang Chao ◽  
Chao-Yeh Chen ◽  
Wen-Dar Huang ◽  
Ching Huei Kao

2004 ◽  
Vol 17 (4) ◽  
pp. 357-365 ◽  
Author(s):  
Chu Zhang ◽  
Annie Tang Gutsche ◽  
Allan D. Shapiro

The plant hypersensitive response (HR) to avirulent bacterial pathogens results from programmed cell death of plant cells in the infected region. Ion leakage and changes in signaling components associated with HR progression were measured. These studies compared Arabidopsis mutants affecting feedback loops with wild-type plants, with timepoints taken hourly. In response to Pseudomonas syringae pv. tomato DC3000·avrB, npr1-2 mutant plants showed increased ion leakage relative to wild-type plants. Hydrogen peroxide accumulation was similar to that in wild type, but salicylic acid accumulation was reduced at some timepoints. With DC3000·avrRpt2, similar trends were seen. In response to DC3000·avrB, ndr1-1 mutant plants showed more ion leakage than wild-type or npr1-2 plants. Hydrogen peroxide accumulation was delayed by approximately 1 h and reached half the level seen with wild-type plants. Salicylic acid accumulation was similar to npr1-2 mutant plants. With DC3000·avrRpt2, ndr1-1 mutant plants showed no ion leakage, no hydrogen peroxide accumulation, and minimal salicylic acid accumulation. Results with a ndr1-1 and npr1-2 double mutant were similar to ndr1-1. A model consistent with these data is presented, in which one positive and two negative regulatory circuits control HR progression. Understanding this circuitry will facilitate HR manipulation for enhanced disease resistance.


Sign in / Sign up

Export Citation Format

Share Document