Electron transport and barrier inhomogeneities in palladium silicide Schottky diodes

1997 ◽  
Vol 65 (4-5) ◽  
pp. 497-503 ◽  
Author(s):  
S. Chand ◽  
J. Kumar
2012 ◽  
Vol 711 ◽  
pp. 188-192
Author(s):  
Muhammad Yousuf Zaman ◽  
Denis Perrone ◽  
Sergio Ferrero ◽  
Luciano Scaltrito ◽  
Marco Naretto

Forward current-voltage characteristics of a medium sized (3.05mm2)Mo/4H-SiC (molyb-denum on silicon carbide) Schottky diode|fabricated for high power applications | are analysedwithin a temperature range of 125-450 K. Accurate theoretical modeling is carried out using Tung'smodel in which it is considered that numerous low barrier nanometer size patches, present in uniformhigh barrier, are responsible for the inhomogeneities in the Schottky barrier of SiC-based electronicdevices. A significant difference is observed between the effective area involved in the current trans-port and the geometric area of the Schottky contact along with a dependence of the ideality factor andhe barrier height on temperature. The obtained values of uniform Schottky barrier and Richardson'sconstant are seen to be in accordance with previous works. It is concluded that the above mentionedmodel can be used to describe the electrical behaviour of Mo/4H-SiC Schottky diodes.


2012 ◽  
Vol 711 ◽  
pp. 174-178 ◽  
Author(s):  
Muhammad Yousuf Zaman ◽  
Denis Perrone ◽  
Sergio Ferrero ◽  
Luciano Scaltrito ◽  
Marco Naretto

Various attempts have been made to evaluate the correct value (A*=146 A/cm2.K2) ofRichardson's constant. In 2005 S. Ferrero et al. published their research in which they performedan analysis of electrical characterizations of twenty Ti/4H-SiC(titanium on silicon carbide) Schottkydiodes with the help of thermionic emission theory and evaluated the value of Richardson's constantto be 17±8 A/cm2.K2; which is very low as compared to the theoretical value of 146 A/cm2.K2.Wehave tried in this paper to evaluate the Richardson's constant's value by nearly same experimental tech-niques followed by S. Ferrero et al. and additionally, have applied Tung's theoretical approach whichdeals with the incorrect value of A* in the perspective of Schottky barrier inhomogeneities caused bythe presence of nanometer size low barrier patches present in the uniform high barrier of the Schottkydiode.We have fabricated two Ti/4H-SiC (titanium on silicon carbide) Schottky diodes with differentareas and oneMo/4H-SiC (molybdenumon silicon carbide) Schottky diode. In this paper we have pre-sented a comparative analysis of forward current-voltage characteristics of all three Schottky diodes.In all three cases we were successful in the evaluation of nearly correct value of Richardson's constant.This work emphasizes the effects of differentmetal-SiC combinations and laboratory environments onthe evaluation of Richardson's constant and the effective area involved in the current transport. As pre-dicted by Tung's model the effective area is seen to be substantially different from the geometric areaof the Schottky diode. Evaluated values of A*, with an error of ±2, come out to be 145.39, 148.33and 148.33 A/cm2.K2for Ti/4H-SiC(large area), Mo/4H-SiC and Ti/4H-SiC(small area) Schottkydiodes, respectively.


2002 ◽  
Vol 80 (10) ◽  
pp. 1761-1763 ◽  
Author(s):  
L. E. Calvet ◽  
R. G. Wheeler ◽  
M. A. Reed

2008 ◽  
Vol 23 (4) ◽  
pp. 045005 ◽  
Author(s):  
A Ferhat Hamida ◽  
Z Ouennoughi ◽  
A Sellai ◽  
R Weiss ◽  
H Ryssel

2020 ◽  
Vol 1004 ◽  
pp. 960-972
Author(s):  
Mehadi Hasan Ziko ◽  
Ants Koel ◽  
Toomas Rang ◽  
Jana Toompuu

The diffusion welding (DW), known as direct bonding technique could be more used as an alternative approach to develop silicon carbide (SiC) Schottky rectifiers to existing mainstream metallization contact technologies. Measured results for p-type 4H-SiC Schottky barrier diodes (SBD) arepresented. And comprehensive numerical study to characterize the device has been performed. The simulations are carried out with ATLAS software (Silvaco). The measured and numerically simulated forward current-voltage (I–V) and capacitance-voltage (C–V) characteristics in a large temperaturerange are analyzed. Some of the measured p-type 4H-SiC Schottky diodes show deviation in specific ranges of their electrical characteristics. This deviation, especially due to excess current, dominates at low voltages (less than 1 V) and temperatures (less than room temperature). To verify the existence of electrically active defects under the Schottky contact, which influences the Schottky barrier height (SBH) and its inhomogeneity, the deep level transient spectroscopy (DLTS) technology was applied. DLTS measurements show the presence of a deep-level defect with activation energy corresponding typically for multilevel trap clusters.


2010 ◽  
Vol 645-648 ◽  
pp. 227-230
Author(s):  
Marco Naretto ◽  
Denis Perrone ◽  
Sergio Ferrero ◽  
Luciano Scaltrito

In this work we present the results of electrical characterization of 4H-SiC power Schottky diodes with a Mo metal barrier for high power applications. A comparison between different Schottky Barrier Height (SBH) evaluation methods (capacitance-voltage and current-voltage measurements), together with the comparison with other authors’ works, indicates that thermionic current theory is the dominant transport mechanism across the barrier from room temperature (RT) to 450K, while at T < 300K some anomalies in J-V curves appear and SBH and ideality factor significantly change their values. These deviations from ideality are attributed to Schottky barrier inhomogeneities. In particular, a model based on two SBHs seems appropriate to properly describe the electrical behavior of our devices.


Sign in / Sign up

Export Citation Format

Share Document