Large deflection electro-mechanical analysis of composite structures bonded with macro-fiber composite actuators considering thermal loads

Author(s):  
M. N. Rao ◽  
R. Schmidt ◽  
K.-U. Schröder
2016 ◽  
Vol 28 (12) ◽  
pp. 1575-1588 ◽  
Author(s):  
Shima Shahab ◽  
Alper Erturk

Piezoelectric structures have been used in a variety of applications ranging from vibration control and sensing to morphing and energy harvesting. In order to employ the effective 33-mode of piezoelectricity, interdigitated electrodes have been used in the design of macro-fiber composites which employ piezoelectric fibers with rectangular cross section. In this article, we present an investigation of the two-way electroelastic coupling (in the sense of direct and converse piezoelectric effects) in bimorph cantilevers that employ interdigitated electrodes for 33-mode operation. A distributed-parameter electroelastic modeling framework is developed for the elastodynamic scenarios of piezoelectric power generation and dynamic actuation. Mixing rules (i.e. rule of mixtures) formulation is employed to evaluate the equivalent and homogenized properties of macro-fiber composite structures. The electroelastic and dielectric properties of a representative volume element (piezoelectric fiber and epoxy matrix) between two neighboring interdigitated electrodes are then coupled with the global electro-elastodynamics based on the Euler–Bernoulli kinematics accounting for two-way electromechanical coupling. Various macro-fiber composite bimorph cantilevers with different widths are tested for resonant dynamic actuation and power generation with resistive shunt damping. Excellent agreement is reported between the measured electroelastic frequency response and predictions of the analytical framework that bridges the continuum electro-elastodynamics and mixing rules formulation.


Author(s):  
Kai-ming Hu ◽  
Hua Li

Macro-Fiber Composite bimorph is a kind of piezoelectric actuator that allow large bending deformation. However, macro-fiber composites exhibit strong stiffness nonlinearity in their operation range, so it is difficult to accurately estimate their large deformation behavior based on a linear constitutive model. In addition, the macro-fiber composites have active and inactive parts, that significantly differ in their material sizes and properties, so it is not reasonable to consider them as uniform material. Thus, it is necessary develop an accurate modeling and analysis method for the large deformation macro-fiber composite structures. First, the mixing rules are extended to derive the three-dimensional homogenized mechanical and electrical parameters of the macro-fiber composite active part; based on these parameters, the actuation results of linear finite element model is in good agreement with the official data. Then a finite element model of the axially compressed macro-fiber composite bimorph is established, the bilinear tensile stiffness of macro-fiber composite is realized by secondary development in ANSYS. Comparison with the experimental results reveals high accuracy of the established finite element model. Thus, the developed method can be effectively used for the performance evaluation and design of the macro-fiber composite devices with large deformation.


Author(s):  
Marwa Mallouli ◽  
Mnaouar Chouchane

Over the last decade, vibration energy harvesting has received substantial attention of many researchers. Piezoelectric materials are able to capture energy from ambient vibration and convert it into electricity which can be stored in batteries or utilized to power small electronic devices. In order to benefit from the 33-mode of the piezoelectric effect, interdigitated electrodes have been utilized in the design of macro fiber composites which are made of piezoelectric fibers of square cross sections embedded into an epoxy matrix material. This paper presents an analytical model of a macro fiber composite bimorph energy harvester using the 33-mode. The mixing rule is applied to determine the equivalent and homogenized properties of the macro fiber composite structures. The electromechanical properties of a representative volume element composed of piezoelectric fibers and an epoxy matrix between two successive interdigitated electrodes are coupled with the overall electro-elastodynamics of the harvester utilizing the Euler–Bernoulli theory. Macro fiber composite bimorph cantilevers with diverse widths are simulated for power generation when a resistive shunt loading is applied. Stress components in the Kapton layers, which are typically a part of any macro fiber composite patch, and in the bonding layers have been included in the model contrary to previously published studies. Variable tip mass, attached at the free end of the beam, is utilized in this paper to tune the resonance frequency of the harvester. The generated power at the fundamental short circuit and open circuit resonance frequencies of harvesters having three different widths is analyzed. It has been observed that higher electrical outputs are produced by the wider macro fiber composite bimorph using (M8528-P1 patches).


2021 ◽  
Vol 262 ◽  
pp. 113631
Author(s):  
Pasquale Junior Capasso ◽  
Giuseppe Petrone ◽  
Nikolai Kleinfeller ◽  
Sergio De Rosa ◽  
Christian Adams

2021 ◽  
pp. 096739112110141
Author(s):  
Ferhat Ceritbinmez ◽  
Ahmet Yapici ◽  
Erdoğan Kanca

In this study, the effect of adding nanosize additive to glass fiber reinforced composite plates on mechanical properties and surface milling was investigated. In the light of the investigations, with the addition of MWCNTs additive in the composite production, the strength of the material has been changed and the more durable composite materials have been obtained. Slots were opened with different cutting speed and feed rate parameters to the composite layers. Surface roughness of the composite layers and slot size were examined and also abrasions of cutting tools used in cutting process were determined. It was observed that the addition of nanoparticles to the laminated glass fiber composite materials played an effective role in the strength of the material and caused cutting tool wear.


2005 ◽  
Vol 128 (1) ◽  
pp. 41-49
Author(s):  
Edward M. Wu ◽  
John L. Kardos

This paper focuses on the probability modeling of fiber composite strength, wherein the failure modes are dominated by fiber tensile failures. The probability model is the tri-modal local load-sharing model, which is the Phoenix-Harlow local load-sharing model with the filament failure model extended from one mode to three modes. This model results in increased efficiency in the determination of fiber statistical parameters and in lower cost when applied to (i) quality control in materials (fiber) manufacturing, (ii) materials (fiber) selection and comparison, (iii) accounting for the effect of size scaling in design, and (iv) qualification and certification of critical composite structures that are too large and expensive to test statistically. In addition, possible extensions to proof testing and time-dependent life prediction are discussed and preliminary data are presented.


Sign in / Sign up

Export Citation Format

Share Document