scholarly journals Olfactory adaptation: recordings from the human olfactory epithelium

Author(s):  
Coralie Mignot ◽  
Anica Schunke ◽  
Charlotte Sinding ◽  
Thomas Hummel

Abstract Purpose Olfactory adaptation is a peripheral (at the epithelium level) or a central (at the brain level) mechanism resulting from repeated or prolonged odorous exposure that can induce a perceptual decrease. The aim of this study was to assess whether a peripheral adaptation occurs when an odor is repeated ten times. Moreover, the specificity of the peripheral adaptation to the nature of the odorant was investigated. Methods Four odorants (eugenol, manzanate, ISO E Super and phenylethanol) were presented using precisely controlled air-dilution olfactometry. They differed in terms of their physicochemical properties. Electrophysiological recordings were made at the level of the olfactory mucosa, the so-called electro-olfactogram (EOG). Thirty-five right-handed participants were recruited. Results Sixty-nine percent of the participants presented at least one EOG, whatever the odor condition. The EOG amplitude did not significantly decrease over 10 repeated exposures to any odorant. The intensity ratings tended to decrease over stimulations for manzanate, PEA, and eugenol. No correlation was found between the mean EOG amplitudes and the mean intensity ratings. However, the presence of EOG amplitude decreases over stimulations for few subjects suggests that peripheral adaptation might exist. Conclusion Overall, our results did not establish a clear peripheral adaptation measured with EOG but indicate the eventuality of such an effect.

1994 ◽  
Vol 71 (1) ◽  
pp. 150-160 ◽  
Author(s):  
A. Mackay-Sim ◽  
S. Kesteven

1. Regional differences in odorant-induced responsiveness of the rat olfactory epithelium were measured via electrophysiological recordings [negative component of electro-olfactogram (Veog(-)) made from the surface of the olfactory epithelium on the nasal septum]. The nasal septum provided a flat surface from which multiple recordings could be made. 2. Veog(-)s were recorded from a standardized grid of 16 sites. This grid of recording sites extended over most of the surface of the olfactory epithelium on the nasal septum. 3. Twenty-one animals were tested for their responses to seven odorants. The animals were divided into three groups, each of which was tested with two different odorants plus amyl acetate, which provided a comparison between the groups. 4. For each odorant in each animal, topographic maps of relative responsiveness were derived to test whether odorants elicited different patterns of responses in the same individual. Topographic maps of responsiveness were derived also for the animal groups to test for the generality of the form of the maps for different odorants. Response latencies were also measured for each odorant at each recording site. 5. All individuals showed different topographic patterns of responses to the three test odorants. For most odorants, the location of the most responsive site was similar in all animals. In different animals the topographic maps for the same odorant were remarkably similar. Topographic maps for the odorants were all different from one another. 6. These results are consistent with the hypothesis that odorant quality is encoded in the differential spatial distribution of receptor cells whose differences in responsiveness appear to be distributed as a continuum across the epithelium. The results establish for a mammalian species what was previously reported in amphibians. These differences are presumed to be due to differential expression of odorant receptor proteins. 7. The mean response latency was 32 ms. This period was similar for all odorants, all animals, and all recording sites and was independent of Veog(-) amplitude. It is concluded that diffusion through the mucus contributed approximately 6 ms to the latency of onset of the responses to these odorants.


2019 ◽  
Vol 58 (05) ◽  
pp. 371-378
Author(s):  
Alfred O. Ankrah ◽  
Ismaheel O. Lawal ◽  
Tebatso M.G. Boshomane ◽  
Hans C. Klein ◽  
Thomas Ebenhan ◽  
...  

Abstract 18F-FDG and 68Ga-citrate PET/CT have both been shown to be useful in the management of tuberculosis (TB). We compared the abnormal PET findings of 18F-FDG- and 68Ga-citrate-PET/CT in patients with TB. Methods Patients with TB on anti-TB therapy were included. Patients had a set of PET scans consisting of both 18F-FDG and 68Ga-citrate. Abnormal lesions were identified, and the two sets of scans were compared. The scan findings were correlated to the clinical data as provided by the attending physician. Results 46 PET/CT scans were performed in 18 patients, 11 (61 %) were female, and the mean age was 35.7 ± 13.5 years. Five patients also had both studies for follow-up reasons during the use of anti-TB therapy. Thirteen patients were co-infected with HIV. 18F-FDG detected more lesions than 68Ga-citrate (261 vs. 166, p < 0.0001). 68Ga-citrate showed a better definition of intracerebral lesions due to the absence of tracer uptake in the brain. The mean SUVmax was higher for 18F-FDG compared to 68Ga-citrate (5.73 vs. 3.01, p < 0.0001). We found a significant correlation between the SUVmax of lesions that were determined by both tracers (r = 0.4968, p < 0.0001). Conclusion Preliminary data shows 18F-FDG-PET detects more abnormal lesions in TB compared to 68Ga-citrate. However, 68Ga-citrate has better lesion definition in the brain and is therefore especially useful when intracranial TB is suspected.


2021 ◽  
Vol 383 (1) ◽  
pp. 485-493 ◽  
Author(s):  
Florence Kermen ◽  
Nathalie Mandairon ◽  
Laura Chalençon

AbstractWhether an odorant is perceived as pleasant or unpleasant (hedonic value) governs a range of crucial behaviors: foraging, escaping danger, and social interaction. Despite its importance in olfactory perception, little is known regarding how odor hedonics is represented and encoded in the brain. Here, we review recent findings describing how odorant hedonic value is represented in the first olfaction processing center, the olfactory bulb. We discuss how olfactory bulb circuits might contribute to the coding of innate and learned odorant hedonics in addition to the odorant’s physicochemical properties.


2011 ◽  
Vol 70 (suppl_1) ◽  
pp. ons114-ons124 ◽  
Author(s):  
Nova B. Thani ◽  
Arul Bala ◽  
Christopher R. P. Lind

Abstract BACKGROUND: Accurate placement of a probe to the deep regions of the brain is an important part of neurosurgery. In the modern era, magnetic resonance image (MRI)-based target planning with frame-based stereotaxis is the most common technique. OBJECTIVE: To quantify the inaccuracy in MRI-guided frame-based stereotaxis and to assess the relative contributions of frame movements and MRI distortion. METHODS: The MRI-directed implantable guide-tube technique was used to place carbothane stylettes before implantation of the deep brain stimulation electrodes. The coordinates of target, dural entry point, and other brain landmarks were compared between preoperative and intraoperative MRIs to determine the inaccuracy. RESULTS: The mean 3-dimensional inaccuracy of the stylette at the target was 1.8 mm (95% confidence interval [CI], 1.5-2.1. In deep brain stimulation surgery, the accuracy in the x and y (axial) planes is important; the mean axial inaccuracy was 1.4 mm (95% CI, 1.1-1.8). The maximal mean deviation of the head frame compared with brain over 24.1 ± 1.8 hours was 0.9 mm (95% CI, 0.5-1.1). The mean 3-dimensional inaccuracy of the dural entry point of the stylette was 1.8 mm (95% CI, 1.5-2.1), which is identical to that of the target. CONCLUSION: Stylette positions did deviate from the plan, albeit by 1.4 mm in the axial plane and 1.8 mm in 3-dimensional space. There was no difference between the accuracies at the dura and the target approximately 70 mm deep in the brain, suggesting potential feasibility for accurate planning along the whole trajectory.


2020 ◽  

This study aimed to examine the brain signals of children with Autism Spectrum Disorder (ASD) and use a method according to the concept of complementary opposites to obtain the prominent features or a pattern of EEG signal that represents the biological characteristic of such children. In this study, 20 children with the mean±SD age of 8±5 years were divided into two groups of normal control (NC) and ASD. The diagnosis and approval of individuals in both groups were conducted by two experts in the field of pediatric psychiatry and neurology. The recording protocol was designed with the most accuracy; therefore, the brain signals were recorded with the least noise in the awake state of the individuals in both groups. Moreover, the recording was conducted in three stages from two channels (C3-C4) of EEG ( referred to as the central part of the brain) which were symmetrical in function. In this study, the Mandala method was adopted based on the concept of complementary opposites to investigate the features extracted from Mandala pattern topology and obtain new features and pseudo-patterns for the screening and early diagnosis of ASD. The optimal feature here was based on different stages of processing and statistical analysis of Pattern Detection Capability (PDC). The PDC is a biomarker derived from the Mandala pattern for differentiating the NC from ASD groups.


2014 ◽  
Vol 23 (3) ◽  
pp. 348-354 ◽  
Author(s):  
Maurício Orlando Wilmsen ◽  
Bruna Fernanda Silva ◽  
César Cristiano Bassetto ◽  
Alessandro Francisco Talamini do Amarante

Gastrointestinal nematode infections were evaluated in sheep raised in Botucatu, state of São Paulo, Brazil between April 2008 and March 2011. Every month, two tracer lambs grazing with a flock of sheep were exposed to natural infection with gastrointestinal nematodes for 28 consecutive days. At the end of this period, the lambs were sacrificed for worm counts. Haemonchus contortus presented 100% of prevalence. The seasons exerted no significant influence on the mean intensity of H. contortus, which ranged from 315 worms in November 2010 to 2,5205 worms in January 2011. The prevalence of Trichostrongylus colubriformis was also 100%, with the lowest mean intensity (15 worms) recorded in February 2011 and the highest (9,760 worms) in October 2009. In the case of T. colubriformis, a significant correlation coefficient was found between worm counts vs. rainfall (r = −0.32; P <0.05). Three other nematodes species were found in tracer lambs, albeit in small numbers. Their prevalence and mean intensity (in parenthesis) were as follows: Oesophagostomum columbianum 28% (25.2), Cooperia curticei 7% (4.5) and Trichuris spp. 2% (1). In conclusion, the environmental conditions of the area proved to be highly favorable for the year-round transmission of H. contortus and T. colubriformis.


1990 ◽  
Vol 258 (6) ◽  
pp. H1829-H1834 ◽  
Author(s):  
K. Fujii ◽  
D. D. Heistad ◽  
F. M. Faraci

Vasomotion is a rhythmic change in vascular caliber that has been described in vivo mainly in peripheral arterioles. In this study, we have characterized vasomotion in a large artery of the brain in vivo. In anesthetized rats, spontaneous vasomotion was observed in 38 of 47 basilar arteries visualized through a cranial window. Base-line arterial diameter was 259 +/- 9 (means +/- SE) microns. Under control conditions, the frequency of vasomotion was 4.8 +/- 0.2 cycles/min, and the amplitude was 19 +/- 2% of the mean diameter. Vasomotion usually occurred simultaneously along the entire length of the vessel, but in some arteries it propagated in either direction. Moderate hypertension (phenylephrine) or vasoconstriction induced by topical application of serotonin, vasopressin, or the thromboxane analogue U 46619 increased the frequency of vasomotion. Moderate hypotension or vasodilation induced by nitroglycerin, adenosine, or acetylcholine decreased the frequency. Marked hypertension, hypotension, or vasodilatation abolished vasomotion. Thus vasomotion of the basilar artery in vivo 1) is common and of relatively large amplitude, 2) does not seem to be driven by a single pacemaker, and 3) is dependent on vessel diameter or vasomotor tone.


1979 ◽  
Vol 237 (3) ◽  
pp. H381-H385 ◽  
Author(s):  
E. F. Ellis ◽  
E. P. Wei ◽  
H. A. Kontos

To determine the possible role that endogenously produced prostaglandins may play in the regulation of cerebral blood flow, the responses of cerebral precapillary vessels to prostaglandins (PG) D2, E2, G2, and I2 (8.1 X 10(-8) to 2.7 X 10(-5) M) were studied in cats equipped with cranial windows for direct observation of the microvasculature. Local application of PGs induced a dose-dependent dilation of large (greater than or equal to 100 microns) and small (less than 100 microns) arterioles with no effect on arterial blood pressure. The relative vasodilator potency was PGG2 greater than PGE2 greater than PGI2 greater than PGD2. With all PGs, except D2, the percent dilation of small arterioles was greater than the dilation of large arterioles. After application of prostaglandins in a concentration of 2.7 X 10(-5) M, the mean +/- standard error of the percent dilation of large and small arterioles was, respectively, 47.6 +/- 2.7 and 65.3 +/- 6.1 for G2, 34.1 +/- 2.0, and 53.6 +/- 5.5 for E2, 25.4 +/- 1.8, and 40.2 +/- 4.6 for I2, and 20.3 +/- 2.5 and 11.0 +/- 2.2 for D2. Because brain arterioles are strongly responsive to prostaglandins and the brain can synthesize prostaglandins from its large endogenous pool of prostaglandin precursor, prostaglandins may be important mediators of changes in cerebral blood flow under normal and abnormal conditions.


2018 ◽  
Author(s):  
Xiaoxing Zhang ◽  
Wenjun Yan ◽  
Wenliang Wang ◽  
Hongmei Fan ◽  
Ruiqing Hou ◽  
...  

SummaryWorking memory is a critical function of the brain to maintain and manipulate information over delay periods of seconds. Sensory areas have been implicated in working memory; however, it is debated whether the delay-period activity of sensory regions is actively maintaining information or passively reflecting top-down inputs. We hereby examined the anterior piriform cortex, an olfactory cortex, in head-fixed mice performing a series of olfactory working memory tasks. Information maintenance is necessary in these tasks, especially in a dual-task paradigm in which mice are required to perform another distracting task while actively maintaining information during the delay period. Optogenetic suppression of the piriform cortex activity during the delay period impaired performance in all the tasks.Furthermore, electrophysiological recordings revealed that the delay-period activity of the anterior piriform cortex encoded odor information with or without the distracting task.Thus, this sensory cortex is critical for active information maintenance in working memory.


Sign in / Sign up

Export Citation Format

Share Document