The interplay between propelling efficiency, hydrodynamic position and energy cost of front crawl in 8 to 19-year-old swimmers

2008 ◽  
Vol 104 (4) ◽  
pp. 689-699 ◽  
Author(s):  
P. Zamparo ◽  
S. Lazzer ◽  
C. Antoniazzi ◽  
S. Cedolin ◽  
R. Avon ◽  
...  
1988 ◽  
Vol 65 (6) ◽  
pp. 2506-2512 ◽  
Author(s):  
H. M. Toussaint ◽  
A. Beelen ◽  
A. Rodenburg ◽  
A. J. Sargeant ◽  
G. de Groot ◽  
...  

In this study the propelling efficiency (ep) of front-crawl swimming, by use of the arms only, was calculated in four subjects. This is the ratio of the power used to overcome drag (Pd) to the total mechanical power (Po) produced including power wasted in changing the kinetic energy of masses of water (Pk). By the use of an extended version of the system to measure active drag (MAD system), Pd was measured directly. Simultaneous measurement of O2 uptake (VO2) enabled the establishment of the relationship between the rate of the energy expenditure (PVO2) and Po (since when swimming on the MAD system Po = Pd). These individual relationships describing the mechanical efficiency (8-12%) were then used to estimate Po in free swimming from measurements of VO2. Because Pd was directly measured at each velocity studied by use of the MAD system, ep could be calculated according to the equation ep = Pd/(Pd + Pk) = Pd/Po. For the four top class swimmers studied, ep was found to range from 46 to 77%. Total efficiency, defined as the product of mechanical and propelling efficiency, ranged from 5 to 8%.


1977 ◽  
Vol 43 (3) ◽  
pp. 475-479 ◽  
Author(s):  
D. R. Pendergast ◽  
P. E. Di Prampero ◽  
A. B. Craig ◽  
D. R. Wilson ◽  
D. W. Rennie

Body drag, D, and the overall mechanical efficiency of swimming, e, were measured from the relationship between extra oxygen consumption and extra drag loads in 42 male and 22 female competitive swimmers using the front crawl at speeds ranging from 0.4 to 1.2 m/s. D increased from 3.4 (1.9) kg at 0.5 m/s to 8.2 (7.0) kg at 1.2 m/s, with D of women (in brackets) being significantly less (P less than 0.05) than that of men. Mechanical efficiency increased from 2.9% at 0.5 m/s to 7.4% at 1.2 m/s for men, the values for women being somewhat greater than those for men. The ratio, D/e was shown to be identical to the directly measured energy cost of swimming one unit distance, V02/d, and was independent of the velocity up to 1.2 m/s. It averaged 52 and 37 l/km for men and women respectively (P less than 0.05). When corrected for body surface area the values were 27 and 22 l/km-m2 for men and women, respectively (P less than 0.05). The underwater torque, T, a measure of the tendency of the feet to sink, was 1.44 kg-m for men and 0.70 kg-m for women (P less than 0.05). VO2/d increased linearly with T for both men and women of similar competitive experience. However, the proportionality constant delta VO2/d-delta T was significantly less for competitive than noncompetitive swimmers. The analysis of the relationship VO2/d vs. T provides a valuable approach to the understanding of the energetics of swimming.


2000 ◽  
Vol 83 (6) ◽  
pp. 487-491 ◽  
Author(s):  
P. Zamparo ◽  
C. Capelli ◽  
M. Cautero ◽  
A. Di Nino
Keyword(s):  

2018 ◽  
Vol 118 (6) ◽  
pp. 1107-1118 ◽  
Author(s):  
Tomohiro Gonjo ◽  
Carla McCabe ◽  
Ana Sousa ◽  
João Ribeiro ◽  
Ricardo J. Fernandes ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Danilo A. Massini ◽  
Tiago A. F. Almeida ◽  
Camila M. T. Vasconcelos ◽  
Anderson G. Macedo ◽  
Mário A. C. Espada ◽  
...  

This study assessed the energy cost in swimming (C) during short and middle distances to analyze the sex-specific responses of C during supramaximal velocity and whether body composition account to the expected differences. Twenty-six swimmers (13 men and 13 women: 16.7 ± 1.9 vs. 15.5 ± 2.8 years old and 70.8 ± 10.6 vs. 55.9 ± 7.0 kg of weight) performed maximal front crawl swimming trials in 50, 100, and 200 m. The oxygen uptake (V˙O2) was analyzed along with the tests (and post-exercise) through a portable gas analyser connected to a respiratory snorkel. Blood samples were collected before and after exercise (at the 1st, 3rd, 5th, and 7th min) to determine blood lactate concentration [La–]. The lean mass of the trunk (LMTrunk), upper limb (LMUL), and lower limb (LMLL) was assessed using dual X-ray energy absorptiometry. Anaerobic energy demand was calculated from the phosphagen and glycolytic components, with the first corresponding to the fast component of the V˙O2 bi-exponential recovery phase and the second from the 2.72 ml × kg–1 equivalent for each 1.0 mmol × L–1 [La–] variation above the baseline value. The aerobic demand was obtained from the integral value of the V˙O2 vs. swimming time curve. The C was estimated by the rate between total energy releasing (in Joules) and swimming velocity. The sex effect on C for each swimming trial was verified by the two-way ANOVA (Bonferroni post hoc test) and the relationships between LMTrunk, LMUL, and LMLL to C were tested by Pearson coefficient. The C was higher for men than women in 50 (1.8 ± 0.3 vs. 1.3 ± 0.3 kJ × m–1), 100 (1.4 ± 0.1 vs. 1.0 ± 0.2 kJ × m–1), and 200 m (1.0 ± 0.2 vs. 0.8 ± 0.1 kJ × m–1) with p < 0.01 for all comparisons. In addition, C differed between distances for each sex (p < 0.01). The regional LMTrunk (26.5 ± 3.6 vs. 20.1 ± 2.6 kg), LMUL (6.8 ± 1.0 vs. 4.3 ± 0.8 kg), and LMLL (20.4 ± 2.6 vs. 13.6 ± 2.5 kg) for men vs. women were significantly correlated to C in 50 (R2adj = 0.73), 100 (R2adj = 0.61), and 200 m (R2adj = 0.60, p < 0.01). Therefore, the increase in C with distance is higher for men than women and is determined by the lean mass in trunk and upper and lower limbs independent of the differences in body composition between sexes.


2004 ◽  
Vol 91 (4) ◽  
pp. 473-480 ◽  
Author(s):  
Per-Ludvik Kjendlie ◽  
Frank Ingjer ◽  
�rjan Madsen ◽  
Robert Keig Stallman ◽  
James Stray-Gundersen
Keyword(s):  

2020 ◽  
Vol 5 (2) ◽  
pp. 37
Author(s):  
Daniel A. Marinho ◽  
Maria I. Ferreira ◽  
Tiago M. Barbosa ◽  
José Vilaça-Alves ◽  
Mário J. Costa ◽  
...  

Background: The current study aimed to verify the changes in performance, physiological and biomechanical variables throughout a season in master swimmers. Methods: Twenty-three master swimmers (34.9 ± 7.4 years) were assessed three times during a season (December: M1, March: M2, June: M3), in indoor 25 m swimming pools. An incremental 5 × 200 m test was used to evaluate the speed at 4 mmol·L−1 of blood lactate concentration (sLT), maximal oxygen uptake (VO2max), peak blood lactate ([La-]peak) after the test, stroke frequency (SF), stroke length (SL), stroke index (SI) and propelling efficiency (ηp). The performance was assessed in the 200 m front crawl during competition. Results: Swimming performance improved between M1, M2 (2%, p = 0.03), and M3 (4%, p < 0.001). Both sLT and VO2max increased throughout the season (4% and 18%, p < 0.001, respectively) but not [La-]peak. While SF decreased 5%, SL, SI and ηp increased 5%, 7%, and 6% (p < 0.001) from M1 to M3. Conclusions: Master swimmers improved significantly in their 200 m front crawl performance over a season, with decreased SF, and increased SL, ηp and SI. Despite the improvement in energetic variables, the change in performance seemed to be more dependent on technical than energetic factors.


1995 ◽  
Vol 78 (2) ◽  
pp. 674-679 ◽  
Author(s):  
C. Capelli ◽  
P. Zamparo ◽  
A. Cigalotto ◽  
M. P. Francescato ◽  
R. G. Soule ◽  
...  

“Underwater torque” (T') is one of the main factors determining the energy cost of front crawl swimming per unit distance (Cs). In turn, T' is defined as the product of the force with which the swimmer's feet tend to sink times the distance between the feet and the center of volume of the lungs. The dependency of Cs on T' was further investigated by determining Cs in a group of 10 recreational swimmers (G1: 4 women and 6 men) and in a group of 8 male elite swimmers (G2) after T' was experimentally modified. This was achieved by securing around the swimmers' waist a plastic tube filled, on different occasions, with air, water, or 1 or 2 kg of lead. Thus, T' was either decreased, unchanged, or increased compared with the natural condition (tube filled with water). Cs was determined, for each T' configuration, at 0.7 m/s for G1 and at 1.0 and 1.2 m/s for G2. For T' equal to the natural value, Cs (in kJ.m-1.m body surface area-2) was 0.36 +/- 0.09 and 0.53 +/- 0.13 for G1 in women and men, respectively, and 0.45 +/- 0.05 and 0.53 +/- 0.06 for G2 at 1.0 and 1.2 m/s, respectively. In a given subject at a given speed, Cs and T' were linearly correlated. To compare different subjects and different speeds, the single values of Cs and T' were normalized by dividing them by the corresponding individual averages. These were calculated from all single values (of Cs or T') obtained from that subject at that speed.(ABSTRACT TRUNCATED AT 250 WORDS)


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Pedro Figueiredo ◽  
David R. Pendergast ◽  
João Paulo Vilas-Boas ◽  
Ricardo J. Fernandes

This study aimed to determine the relative contribution of selected biomechanical, energetic, coordinative, and muscular factors for the 200 m front crawl and each of its four laps. Ten swimmers performed a 200 m front crawl swim, as well as 50, 100, and 150 m at the 200 m pace. Biomechanical, energetic, coordinative, and muscular factors were assessed during the 200 m swim. Multiple linear regression analysis was used to identify the weight of the factors to the performance. For each lap, the contributions to the 200 m performance were 17.6, 21.1, 18.4, and 7.6% for stroke length, 16.1, 18.7, 32.1, and 3.2% for stroke rate, 11.2, 13.2, 6.8, and 5.7% for intracycle velocity variation inx, 9.7, 7.5, 1.3, and 5.4% for intracycle velocity variation iny, 17.8, 10.5, 2.0, and 6.4% for propelling efficiency, 4.5, 5.8, 10.9, and 23.7% for total energy expenditure, 10.1, 5.1, 8.3, and 23.7% for interarm coordination, 9.0, 6.2, 8.5, and 5.5% for muscular activity amplitude, and 3.9, 11.9, 11.8, and 18.7% for muscular frequency). The relative contribution of the factors was closely related to the task constraints, especially fatigue, as the major changes occurred from the first to the last lap.


Sign in / Sign up

Export Citation Format

Share Document