scholarly journals Drought tolerance in selected aerobic and upland rice varieties is driven by different metabolic and antioxidative responses

Planta ◽  
2021 ◽  
Vol 254 (1) ◽  
Author(s):  
Giovanni Melandri ◽  
Hamada AbdElgawad ◽  
Kristýna Floková ◽  
Diaan C. Jamar ◽  
Han Asard ◽  
...  

Abstract Main conclusions Sugar-mediated osmotic acclimation and a strong antioxidative response reduce drought-induced biomass loss at the vegetative stage in rice. Abstract A clear understanding of the physiological and biochemical adaptations to water limitation in upland and aerobic rice can help to identify the mechanisms underlying their tolerance to low water availability. In this study, three indica rice varieties-IR64 (lowland), Apo (aerobic), and UPL Ri-7 (upland)-, that are characterized by contrasting levels of drought tolerance, were exposed to drought at the vegetative stage. Drought-induced changes in biomass, leaf metabolites and oxidative stress markers/enzyme activities were analyzed in each variety at multiple time points. The two drought-tolerant varieties, Apo and UPL Ri-7 displayed a reduced water use in contrast to the susceptible variety IR64 that displayed high water consumption and consequent strong leaf dehydration upon drought treatment. A sugar-mediated osmotic acclimation in UPL Ri-7 and a strong antioxidative response in Apo were both effective in limiting the drought-induced biomass loss in these two varieties, while biomass loss was high in IR64, also after recovery. A qualitative comparison of these results with the ones of a similar experiment conducted in the field at the reproductive stage showed that only Apo, which also in this stage showed the highest antioxidant power, was able to maintain a stable grain yield under stress. Our results show that different metabolic and antioxidant adaptations confer drought tolerance to aerobic and upland rice varieties in the vegetative stage. The effectiveness of these adaptations differs between developmental stages. Unraveling the genetic control of these mechanisms might be exploited in breeding for new rice varieties adapted to water-limited environments.

2021 ◽  
pp. 53-64
Author(s):  
Mirza Mofazzal Islam ◽  
Shamsun Nahar Begum ◽  
Rigyan Gupta

Abstract Drought is an important stress phenomenon in Bangladesh that greatly hampers crop production. So, it is imperative to develop drought-tolerant rice varieties. Low-yielding, non-uniform flowering and late-maturing Africa rice - New Rice for Africa (NERICA), viz. NERICA-1, NERICA-4 and NERICA-10 varieties - were irradiated with different doses of gamma-rays (250, 300 and 350 Gy) in 2010. M1 plants were grown and M2 plants were selected based on earliness and higher grain yield. The desired mutants along with other mutants were grown as the M3 generation during 2011. A total of 37 mutants from NERICA-1, NERICA-4 and NERICA-10 were selected on the basis of plant height, short duration, drought tolerance and high yield in the M4 generation. In the M5 generation, six mutants were selected for drought tolerance, earliness, grain quality and higher yield. With respect to days to maturity and grain yield (t/ha), the mutant N1/250/P-2-6-1 of NERICA-1 matured earlier (108 days) and had higher grain yield (5.1 t/ha) than the parent. The mutant N4/350/P-4(5) of NERICA-4 also showed a higher grain yield (6.2 t/ha) than its parent and other mutants. On the other hand, NERICA-10 mutant N10/350/P-5-4 matured earlier and had a higher yield (4.5 t/ha) than its parent. Finally, based on agronomic performance and drought tolerance, the two mutants N4/350/P-4(5) and N10/350/P-5-4 were selected and were evaluated in drought-prone and upland areas during 2016 and 2017. These two mutants performed well with higher grain yield than the released upland rice varieties. They will be released soon for commercial cultivation and are anticipated to play a vital role in food security in Bangladesh.


2020 ◽  
Vol 41 (2) ◽  
pp. 421-434
Author(s):  
Leandro Martins Ferreira ◽  
◽  
Cristiana Maia de Oliveira ◽  
Leilson Novaes Arruda ◽  
Renan Pinto Braga ◽  
...  

2017 ◽  
Vol 9 (3) ◽  
pp. 138 ◽  
Author(s):  
G. M. Malemba ◽  
F. M. Nzuve ◽  
J. M. Kimani ◽  
M. F. Olubayo ◽  
J. W. Muthomi

Rice is an important food crop for human population ranking second among the mostly consumed cereal grains worldwide. Upland rice production is greatly constrained by drought stress resulting from rainfall variation patterns. Cultivation of drought tolerant varieties is considered the best option for drought management in rice production. The already released upland rice varieties are drought susceptible and have poor grain attributes hence, the aim of this study was to determine the combining ability for drought tolerance in upland rice. Four upland NERICA and two upland rice varieties were selected as parents for generating F1s crosses following 6 × 6 complete diallel. The generated 30 F1 crosses were advanced to F2 population for field evaluation. The F2 progenies together with six parents were planted in two sites; KALRO-Mwea Center Farm and Kirogo research Farm following a randomized complete block design in three replications. Drought stress was initiated 45 days after sowing after which data was collected on drought and agronomic parameters. The study revealed large genetic variations among the genotypes used. Both GCA and SCA were significant indicating the importance of both additive and non additive gene action in the expression of studied traits. In this study NERICA 2 and NERICA 15 were identified as good combiners for drought tolerance and grain yield under drought conditions. The single crosses namely; NERICA 15 × NERICA 2, NERICA 1 × NERICA 15, NERICA 11 × NERICA 15 and NERICA 2 × NERICA 15 were identified as superior for improving yield under drought conditions.


2015 ◽  
Vol 15 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Kittichai Narenoot ◽  
Tidarat Monkham ◽  
Sompong Chankaew ◽  
Patcharin Songsri ◽  
Wattana Pattanagul ◽  
...  

Drought remains the most important factor that affects rice productivity, especially in rainfed areas, worldwide. Upland rice is one of the crop choices of farmers in the rainfed environment. Although upland rice varieties require less water than lowland rice varieties, yields often remain limited by drought, particularly in the period of early growth. The aims of this study were to identify the traits related to early drought tolerance in upland rice varieties, and to identify the potential sources of germplasm for early drought tolerance. A total of sixty upland rice varieties were planted in a factorial experiment with a randomized complete block design with 3 replications in the rainy seasons of 2011 and 2012, under greenhouse conditions. Based on the drought tolerance index (DTI), the test germplasm sources were classified into three groups: (i) susceptible; (ii) moderately tolerant; (iii) tolerant to drought stress. Grain yield (GY) showed significant negative correlations with the leaf rolling score (r= − 0.623, P< 0.01), the leaf death score (LDS) (r= − 0.673, P< 0.01) and the recovery score (r= − 0.746, P< 0.01), while leaf dry matter (r= 0.698, P< 0.01) and leaf water potential (r= 0.618, P< 0.01) had significant positive correlations with GY. These findings indicate the suitability of the DTI as the selection criteria for early drought tolerance in a breeding programme. In addition, the upland rice germplasm accessions KKU-ULR011, KKU-ULR012, KKU-ULR125, KKU-ULR199 and KKU-ULR292 were identified as having high levels of stability for drought tolerance in both the 2011 and 2012 experiments, suggesting their potential for further use for rice variety improvement for drought tolerance.


2019 ◽  
Vol 6 (2) ◽  
pp. 200-210
Author(s):  
Muhammad Syahril ◽  
Syamsul Bahri ◽  
Rhido Suhada

Efforts for increasing rice production nationally, it is necessary to increase the productivity of a land. Utilization of marginal lands like drought land potential to increase rice production nationally. One effort to utilize marginal land like dry land is the use of high-yielding drought tolerant varieties. Until now high-yielding drought tolerant varieties still relatively rare. For this reason, it is necessary to create high-yielding drought tolerant varieties from plant breeding program. One of the standard programs in plant breeding to create high-yielding drought tolerant varieties is provision of genetic material as parental. Local varieties gogo rice Drought-tolerant potential to be used as parental in the plant breeding program to create of high-yielding drought tolerant rice varieties. For this reason, it is necessary to test drought tolerance of local rice cultivars. The study used 10 cultivars exploration results in East Aceh Regency namely Gameso, Sibengkok, Ramos Gunung, Sidol, Sigedul, Rias Kuning, Rias putih, Sibontok, Serumu, and Sileso. Drought tolerance testing using PEG solution (Polyethylene Glycol) 6000 156. 75 g / liter of H2O which is equivalent to the osmotic potential of -3 BAR and aquades as control (0 BAR) an germination stage and early vegetative stage. The results of the study show that 10 cultivars tested in the germination stage, 6 cultivars were selected as drought tolerant cultivars. Furthermore, 6 cultivars tested in the early vegetative stage showed the ability to recover at day 35 and then at day 42 showed no symptoms of drought. 6 drought tolerant cultivars are Gameso, Ramos Gunung, Sigedul, Rias Kuning, Sibontok, and Sileso.


2017 ◽  
Author(s):  
Haiyan Xiong ◽  
Jianping Yu ◽  
Jinjie Li ◽  
Xin Wang ◽  
Pengli Liu ◽  
...  

AbstractBackgroundImproving performance of rice under drought stress has potential to significant impact on rice productivity. Previously we reported that OsLG3 positively control rice grain length and yield.ResultsIn this study, we found that OsLG3 was more strongly expressed in upland rice compared to lowland rice under drought stress condition. Candidate gene association analysis showed that the natural variation in OsLG3 was associated with tolerance to water deficit stress in germinating rice seeds. Transgenic rice with enhanced OsLG3 expression exhibited improved tolerance to drought and that is most likely due to enhanced ROS scavenging efficiency. Phylogenetic analysis and pedigree records indicated that the tolerant allele of OsLG3 has potential to improve drought tolerance of japonica rice.ConclusionsCollectively, our work revealed that the natural variation of OsLG3 contributes to rice drought tolerance and the elite allele of OsLG3 is a promising genetic resource for the development of drought-tolerant and high-yield rice varieties.


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
ROFIQOH PURNAMA RIA ◽  
BENYAMIN LAKITAN ◽  
FIRDAUS SULAIMAN ◽  
KARTIKA KARTIKA ◽  
RUJITO AGUS SUWIGNYO

Abstract. Ria RP, Lakitan B, Sulaiman F, Kartika K, Suwignyo RA. 2020. Cross-ecosystem utilizing primed seeds of upland rice varieties for enriching crop diversity at riparian wetland during dry season. Biodiversitas 21: 3008-3017. Cultivation of rice during second growing season at riparian wetlands in Indonesia must deal with drought conditions at reproductive stage. Seed priming can speed up seed emergence and produces vigorous seedlings. Objective of this study was to screen upland rice varieties which were positively responded to seed priming and tolerant to drought during late vegetative and/or reproductive stage. Results of this study indicated that osmo-priming showed positive effects on seed emergence, percentage of germinated seed, and time to reach 50% germination. Effects of osmo-priming on seedling growth did not go beyond four weeks after seedlings had been transplanted. Among nine varieties screened, Inpago 10 exhibited better response to seed priming during late vegetative stage as it produced the highest number of tillers and total leaf area. However, at harvest, osmo-priming with 20% PEG lowered filled spikelet and weight of 100 grains but did not affect yield. Drought during late vegetative stage lessened number of tillers but after drought-treated plants recovered during reproductive stage, percentage of filled spikelet and grain size were comparable to those of control plants. Meanwhile, drought imposed during reproductive stage decreased percentage of filled spikelet and grain yield. Despite its better performance under drought conditions, leaf rolling score was higher during heading stage in Inpago 10. This phenomenon indicated that leaf rolling was not forced by drought, rather it was a quick response of Inpago 10 variety to limit water loss due to transpiration.


Rice Science ◽  
2021 ◽  
Vol 28 (5) ◽  
pp. 493-500
Author(s):  
Vishalakshi Balija ◽  
Umakanth Bangale ◽  
Senguttuvel Ponnuvel ◽  
Kalyani Makarand Barbadikar ◽  
Srinivas Prasad Madamshetty ◽  
...  

2017 ◽  
Vol 47 (3) ◽  
pp. 185-194 ◽  
Author(s):  
Adriano Stephan NASCENTE ◽  
Ruby KROMOCARDI

ABSTRACT The upland rice farmers in Suriname use local varieties and low level technologies in the field. As a result, the upland rice grain yield is low, at about 1 000 kg ha-1. Our objective was to evaluate the use of upland rice cultivars from Suriname and Brazil, and the effect of nitrogen, N, phosphorus, P, and potassium, K, fertilizers on cultivation variables. We undertook four field trials in the Victoria Area, in the Brokopondo District, using a randomized block design each with four replications. The most productive rice varieties were BRS Esmeralda (grain yield 2 903 kg ha-1) and BRS Sertaneja (2 802 kg ha-1). The highest grain yield of 2 620 kg ha-1 was achieved with a top dressing application of 76.41 kg N ha-1 20 days after sowing. For P, the highest grain yield of 3 085 kg ha-1 was achieved with application of 98.06 kg ha-1 P2O5 applied at sowing. An application rate of 31.45 kg ha-1 of K2O at sowing achieved the highest grain yield of 2 952 kg ha-1. Together, these application rates of N, P and K resulted in rice grain yield of about 3 000 kg ha-1, which is three times greater than the national average for upland rice. We demonstrate that the use of improved rice varieties matched to the local conditions, and application of appropriate fertilizers, are management practices that can result in significant increases in rice grain yield in Suriname.


Sign in / Sign up

Export Citation Format

Share Document