scholarly journals The population genetics characteristics of a 90 locus panel of microhaplotypes

2021 ◽  
Vol 140 (12) ◽  
pp. 1753-1773
Author(s):  
Andrew J. Pakstis ◽  
Neeru Gandotra ◽  
William C. Speed ◽  
Michael Murtha ◽  
Curt Scharfe ◽  
...  

AbstractSingle-nucleotide polymorphisms (SNPs) and small genomic regions with multiple SNPs (microhaplotypes, MHs) are rapidly emerging as novel forensic investigative tools to assist in individual identification, kinship analyses, ancestry inference, and deconvolution of DNA mixtures. Here, we analyzed information for 90 microhaplotype loci in 4009 individuals from 79 world populations in 6 major biogeographic regions. The study included multiplex microhaplotype sequencing (mMHseq) data analyzed for 524 individuals from 16 populations and genotype data for 3485 individuals from 63 populations curated from public repositories. Analyses of the 79 populations revealed excellent characteristics for this 90-plex MH panel for various forensic applications achieving an overall average effective number of allele values (Ae) of 4.55 (range 1.04–19.27) for individualization and mixture deconvolution. Population-specific random match probabilities ranged from a low of 10–115 to a maximum of 10–66. Mean informativeness (In) for ancestry inference was 0.355 (range 0.117–0.883). 65 novel SNPs were detected in 39 of the MHs using mMHseq. Of the 3018 different microhaplotype alleles identified, 1337 occurred at frequencies > 5% in at least one of the populations studied. The 90-plex MH panel enables effective differentiation of population groupings for major biogeographic regions as well as delineation of distinct subgroupings within regions. Open-source, web-based software is available to support validation of this technology for forensic case work analysis and to tailor MH analysis for specific geographical regions.

Author(s):  
Gloria Pérez-Rubio ◽  
Luis Alberto López-Flores ◽  
Ana Paula Cupertino ◽  
Francisco Cartujano-Barrera ◽  
Luz Myriam Reynales-Shigematsu ◽  
...  

Previous studies have identified variants in genes encoding proteins associated with the degree of addiction, smoking onset, and cessation. We aimed to describe thirty-one single nucleotide polymorphisms (SNPs) in seven candidate genomic regions spanning six genes associated with tobacco-smoking in a cross-sectional study from two different interventions for quitting smoking: (1) thirty-eight smokers were recruited via multimedia to participate in e-Decídete! program (e-Dec) and (2) ninety-four attended an institutional smoking cessation program on-site. SNPs genotyping was done by real-time PCR using TaqMan probes. The analysis of alleles and genotypes was carried out using the EpiInfo v7. on-site subjects had more years smoking and tobacco index than e-Dec smokers (p < 0.05, both); in CYP2A6 we found differences in the rs28399433 (p < 0.01), the e-Dec group had a higher frequency of TT genotype (0.78 vs. 0.35), and TG genotype frequency was higher in the on-site group (0.63 vs. 0.18), same as GG genotype (0.03 vs. 0.02). Moreover, three SNPs in NRXN1, two in CHRNA3, and two in CHRNA5 had differences in genotype frequencies (p < 0.01). Cigarettes per day were different (p < 0.05) in the metabolizer classification by CYP2A6 alleles. In conclusion, subjects attending a mobile smoking cessation intervention smoked fewer cigarettes per day, by fewer years, and by fewer cumulative pack-years. There were differences in the genotype frequencies of SNPs in genes related to nicotine metabolism and nicotine dependence. Slow metabolizers smoked more cigarettes per day than intermediate and normal metabolizers.


2006 ◽  
Vol 04 (03) ◽  
pp. 639-647 ◽  
Author(s):  
ELEAZAR ESKIN ◽  
RODED SHARAN ◽  
ERAN HALPERIN

The common approaches for haplotype inference from genotype data are targeted toward phasing short genomic regions. Longer regions are often tackled in a heuristic manner, due to the high computational cost. Here, we describe a novel approach for phasing genotypes over long regions, which is based on combining information from local predictions on short, overlapping regions. The phasing is done in a way, which maximizes a natural maximum likelihood criterion. Among other things, this criterion takes into account the physical length between neighboring single nucleotide polymorphisms. The approach is very efficient and is applied to several large scale datasets and is shown to be successful in two recent benchmarking studies (Zaitlen et al., in press; Marchini et al., in preparation). Our method is publicly available via a webserver at .


Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 170 ◽  
Author(s):  
Zengkui Lu ◽  
Yaojing Yue ◽  
Chao Yuan ◽  
Jianbin Liu ◽  
Zhiqiang Chen ◽  
...  

Body weight is an important economic trait for sheep and it is vital for their successful production and breeding. Therefore, identifying the genomic regions and biological pathways that contribute to understanding variability in body weight traits is significant for selection purposes. In this study, the genome-wide associations of birth, weaning, yearling, and adult weights of 460 fine-wool sheep were determined using resequencing technology. The results showed that 113 single nucleotide polymorphisms (SNPs) reached the genome-wide significance levels for the four body weight traits and 30 genes were annotated effectively, including AADACL3, VGF, NPC1, and SERPINA12. The genes annotated by these SNPs significantly enriched 78 gene ontology terms and 25 signaling pathways, and were found to mainly participate in skeletal muscle development and lipid metabolism. These genes can be used as candidate genes for body weight in sheep, and provide useful information for the production and genomic selection of Chinese fine-wool sheep.


2018 ◽  
Author(s):  
Brian S. Helfer ◽  
Darrell O. Ricke

AbstractHigh throughput sequencing (HTS) of single nucleotide polymorphisms (SNPs) provides additional applications for DNA forensics including identification, mixture analysis, kinship prediction, and biogeographic ancestry prediction. Public repositories of human genetic data are being rapidly generated and released, but the majorities of these samples are de-identified to protect privacy, and have little or no individual metadata such as appearance (photos), ethnicity, relatives, etc. A reference in silico dataset has been generated to enable development and testing of new DNA forensics algorithms. This dataset provides 11 million SNP profiles for individuals with defined ethnicities and family relationships spanning eight generations with admixture for a panel with 39,108 SNPs.


2021 ◽  
Author(s):  
Yu-Ming Hsu ◽  
Matthieu Falque ◽  
Olivier Martin

In essentially all species where meiotic crossovers have been studied, they occur preferentially in open chromatin, typically near gene promoters and to a lesser extent at the end of genes. Here, in the case of Arabidopsis thaliana, we unveil further trends arising when one considers contextual information, namely summarized epigenetic status, size of underlying genomic regions and degree of divergence between homologs. For instance we find that intergenic recombination rate is reduced if those regions are less than 1.5 kb in size. Furthermore, we propose that the presence of single nucleotide polymorphisms is a factor driving enhanced crossover rate compared to when homologous sequences are identical, in agreement with previous works comparing rates in homozygous and heterozygous blocks. Lastly, by integrating these different factors, we produce a quantitative and predictive model of the recombination landscape that reproduces much of the experimental variation.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 14 ◽  
Author(s):  
Peter T. Habib ◽  
Alsamman M. Alsamman ◽  
Sameh E. Hassanein ◽  
Kerolos M. Yousef ◽  
Aladdin Hamwieh

Current single nucleotide polymorphism (SNP) databases are limited to a narrow set of SNPs, which has led to a lack of interactivity between different databases, limited tools to analyze and manipulate the already existing data, and complexity in the graphical user interface. Here we introduce Pharmosome, a web-based, user-friendly and collective database for more than 30,000 human disease-related SNPs, with dynamic pipelines to explore SNPs associated with disease development, drug response and the pathways shared between different genes related to these SNPs. Pharmosome implements several tools to design primers to detect SNPs in large genomes and facilitates analysis of different SNPs to determine relationships between them by aligning sequences, constructing phylogenetic trees, and providing consensus sequences illustrating the connections between SNPs. Pharmosome was written in the Python programming language using the Django web framework in combination with HTML, CSS, and JavaScript to receive user inputs, and process and export the sorted result to the interface. Pharmosome is available from: https://pharmosome.herokuapp.com/.


2017 ◽  
Author(s):  
Débora Y. C. Brandt ◽  
Jônatas César ◽  
Jérôme Goudet ◽  
Diogo Meyer

ABSTRACTBalancing selection is defined as a class of selective regimes that maintain polymorphism above what is expected under neutrality. Theory predicts that balancing selection reduces population differentiation, as measured by FST. However, balancing selection regimes in which different sets of alleles are maintained in different populations could increase population differentiation. To tackle this issue, we investigated population differentiation at the HLA genes, which constitute the most striking example of balancing selection in humans. We found that population differentiation of single nucleotide polymorphisms (SNPs) at the HLA genes is on average lower than that of SNPs in other genomic regions. However, this result depends on accounting for the differences in allele frequency between selected and putatively neutral sites. Our finding of reduced differentiation at SNPs within HLA genes suggests a predominant role of shared selective pressures among populations at a global scale. However, in pairs of closely related populations, where genome-wide differentiation is low, differentiation at HLA is higher than in other genomic regions. This pattern was reproduced in simulations of overdominant selection. We conclude that population differentiation at the HLA genes is generally lower than genome-wide, but it may be higher for recently diverged population pairs, and that this pattern can be explained by a simple overdominance regime.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Kira Delmore ◽  
Juan Carlos Illera ◽  
Javier Pérez-Tris ◽  
Gernot Segelbacher ◽  
Juan S Lugo Ramos ◽  
...  

Seasonal migration is a taxonomically widespread behaviour that integrates across many traits. The European blackcap exhibits enormous variation in migration and is renowned for research on its evolution and genetic basis. We assembled a reference genome for blackcaps and obtained whole genome resequencing data from individuals across its breeding range. Analyses of population structure and demography suggested divergence began ~30,000 ya, with evidence for one admixture event between migrant and resident continent birds ~5000 ya. The propensity to migrate, orientation and distance of migration all map to a small number of genomic regions that do not overlap with results from other species, suggesting that there are multiple ways to generate variation in migration. Strongly associated single nucleotide polymorphisms (SNPs) were located in regulatory regions of candidate genes that may serve as major regulators of the migratory syndrome. Evidence for selection on shared variation was documented, providing a mechanism by which rapid changes may evolve.


Sign in / Sign up

Export Citation Format

Share Document