scholarly journals Quantitative modeling of fine-scale variations in the Arabidopsis thaliana crossover landscape

2021 ◽  
Author(s):  
Yu-Ming Hsu ◽  
Matthieu Falque ◽  
Olivier Martin

In essentially all species where meiotic crossovers have been studied, they occur preferentially in open chromatin, typically near gene promoters and to a lesser extent at the end of genes. Here, in the case of Arabidopsis thaliana, we unveil further trends arising when one considers contextual information, namely summarized epigenetic status, size of underlying genomic regions and degree of divergence between homologs. For instance we find that intergenic recombination rate is reduced if those regions are less than 1.5 kb in size. Furthermore, we propose that the presence of single nucleotide polymorphisms is a factor driving enhanced crossover rate compared to when homologous sequences are identical, in agreement with previous works comparing rates in homozygous and heterozygous blocks. Lastly, by integrating these different factors, we produce a quantitative and predictive model of the recombination landscape that reproduces much of the experimental variation.

2018 ◽  
Author(s):  
Paul Guilhamon ◽  
Mathieu Lupien

AbstractMotivationSingle Nucleotide Variants (SNVs), including somatic point mutations and Single Nucleotide Polymorphisms (SNPs), in noncoding cis-regulatory elements (CREs) can affect gene regulation and lead to disease development (Zhou et al., 2016; Zhang et al., 2014). Others have previously developed methods to identify important clusters of somatic point mutations based on proximity (Weinhold et al., 2014) or the enrichment of inherited risk-SNPs at CREs (Ahmed et al., 2017). Here, we present SMuRF (Significantly Mutated Region Finder), a user-friendly command-line tool to identify these significantly mutated regions from user-defined genomic intervals and SNVs.ResultsSMuRF identified 72 significantly mutated CREs in liver cancer, including known mutated gene promoters as well as previously unreported regions.AvailabilityThe source code for SMuRF is open-source and freely available on GitHub (https://github.com/LupienLabOrganization/SMuRF) under the GNU GPLv3 license. SMuRF is implemented in Bash and R; it runs on any platform with Bash (≥4.1.2), R (≥3.3.0) and BEDTools (≥2.26.0). It requires the following R packages: GenomicRanges, gtools, gplots, ggplot2, data.table, psych, and dplyr.Supplementary InformationSupplementary information available at Bioinformatics [email protected]; [email protected]


Author(s):  
Gloria Pérez-Rubio ◽  
Luis Alberto López-Flores ◽  
Ana Paula Cupertino ◽  
Francisco Cartujano-Barrera ◽  
Luz Myriam Reynales-Shigematsu ◽  
...  

Previous studies have identified variants in genes encoding proteins associated with the degree of addiction, smoking onset, and cessation. We aimed to describe thirty-one single nucleotide polymorphisms (SNPs) in seven candidate genomic regions spanning six genes associated with tobacco-smoking in a cross-sectional study from two different interventions for quitting smoking: (1) thirty-eight smokers were recruited via multimedia to participate in e-Decídete! program (e-Dec) and (2) ninety-four attended an institutional smoking cessation program on-site. SNPs genotyping was done by real-time PCR using TaqMan probes. The analysis of alleles and genotypes was carried out using the EpiInfo v7. on-site subjects had more years smoking and tobacco index than e-Dec smokers (p < 0.05, both); in CYP2A6 we found differences in the rs28399433 (p < 0.01), the e-Dec group had a higher frequency of TT genotype (0.78 vs. 0.35), and TG genotype frequency was higher in the on-site group (0.63 vs. 0.18), same as GG genotype (0.03 vs. 0.02). Moreover, three SNPs in NRXN1, two in CHRNA3, and two in CHRNA5 had differences in genotype frequencies (p < 0.01). Cigarettes per day were different (p < 0.05) in the metabolizer classification by CYP2A6 alleles. In conclusion, subjects attending a mobile smoking cessation intervention smoked fewer cigarettes per day, by fewer years, and by fewer cumulative pack-years. There were differences in the genotype frequencies of SNPs in genes related to nicotine metabolism and nicotine dependence. Slow metabolizers smoked more cigarettes per day than intermediate and normal metabolizers.


2006 ◽  
Vol 04 (03) ◽  
pp. 639-647 ◽  
Author(s):  
ELEAZAR ESKIN ◽  
RODED SHARAN ◽  
ERAN HALPERIN

The common approaches for haplotype inference from genotype data are targeted toward phasing short genomic regions. Longer regions are often tackled in a heuristic manner, due to the high computational cost. Here, we describe a novel approach for phasing genotypes over long regions, which is based on combining information from local predictions on short, overlapping regions. The phasing is done in a way, which maximizes a natural maximum likelihood criterion. Among other things, this criterion takes into account the physical length between neighboring single nucleotide polymorphisms. The approach is very efficient and is applied to several large scale datasets and is shown to be successful in two recent benchmarking studies (Zaitlen et al., in press; Marchini et al., in preparation). Our method is publicly available via a webserver at .


2004 ◽  
Vol 1 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Hao Gang-Ping ◽  
Wu Zhong-Yi ◽  
Chen Mao-Sheng ◽  
Cao Ming-Qing ◽  
Dominique Brunel ◽  
...  

AbstractThe levels of drought tolerance and nucleotide polymorphism at the CBF4 locus were examined in a world-wide sample of 17 core accessions of Arabidopsis thaliana. The results showed that different accessions exhibited considerable differences in adaptation to drought stress. Compared with Columbia accession, the frequency of nucleotide polymorphism at the CBF4 locus of 25av, 203av and 244av accessions, including single nucleotide polymorphism (SNP) and insertion/deletion (Indel), was high, on average 1 SNP per 35.8 bp and 1 Indel per 143 bp. No significance in all regions of Tajima's D test indicated that the neutral mutation hypothesis could explain the nucleotide polymorphism in this CBF4 gene region. The higher polymorphism was the result of purification selection. Nucleotide polymorphism in the non-coding region was three times higher than in the coding region. This might indicate a recent relaxation of selection pressures on the non-coding region of CBF4 gene. In the coding region of CBF4, SNP frequency was 1 SNP per 96.4 bp and one non-synonymous mutation was detected from 25av, 203av and 244av accessions: the amino acid variation gly↔val at position 205, caused by the nucleotide variation G↔T at position 1034 (corresponding to the nucleotide at position 19 696 of GenBank accession no. AB015478 as 1). Furthermore, four differential SNPs were discovered in haplotype 6 constituted by 203av, one of them located in the 3′ non-coding region (A↔C at position 1106) and the others in the 5′ non-coding region (A↔G, A↔C and G↔A at positions 27, 129 and 171, respectively). The drought tolerance assay indicated that accession 203av was the best at tolerating water deficiency. We propose that haplotype 6 is consistent with its drought tolerance.


Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 170 ◽  
Author(s):  
Zengkui Lu ◽  
Yaojing Yue ◽  
Chao Yuan ◽  
Jianbin Liu ◽  
Zhiqiang Chen ◽  
...  

Body weight is an important economic trait for sheep and it is vital for their successful production and breeding. Therefore, identifying the genomic regions and biological pathways that contribute to understanding variability in body weight traits is significant for selection purposes. In this study, the genome-wide associations of birth, weaning, yearling, and adult weights of 460 fine-wool sheep were determined using resequencing technology. The results showed that 113 single nucleotide polymorphisms (SNPs) reached the genome-wide significance levels for the four body weight traits and 30 genes were annotated effectively, including AADACL3, VGF, NPC1, and SERPINA12. The genes annotated by these SNPs significantly enriched 78 gene ontology terms and 25 signaling pathways, and were found to mainly participate in skeletal muscle development and lipid metabolism. These genes can be used as candidate genes for body weight in sheep, and provide useful information for the production and genomic selection of Chinese fine-wool sheep.


2017 ◽  
Author(s):  
Débora Y. C. Brandt ◽  
Jônatas César ◽  
Jérôme Goudet ◽  
Diogo Meyer

ABSTRACTBalancing selection is defined as a class of selective regimes that maintain polymorphism above what is expected under neutrality. Theory predicts that balancing selection reduces population differentiation, as measured by FST. However, balancing selection regimes in which different sets of alleles are maintained in different populations could increase population differentiation. To tackle this issue, we investigated population differentiation at the HLA genes, which constitute the most striking example of balancing selection in humans. We found that population differentiation of single nucleotide polymorphisms (SNPs) at the HLA genes is on average lower than that of SNPs in other genomic regions. However, this result depends on accounting for the differences in allele frequency between selected and putatively neutral sites. Our finding of reduced differentiation at SNPs within HLA genes suggests a predominant role of shared selective pressures among populations at a global scale. However, in pairs of closely related populations, where genome-wide differentiation is low, differentiation at HLA is higher than in other genomic regions. This pattern was reproduced in simulations of overdominant selection. We conclude that population differentiation at the HLA genes is generally lower than genome-wide, but it may be higher for recently diverged population pairs, and that this pattern can be explained by a simple overdominance regime.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Kira Delmore ◽  
Juan Carlos Illera ◽  
Javier Pérez-Tris ◽  
Gernot Segelbacher ◽  
Juan S Lugo Ramos ◽  
...  

Seasonal migration is a taxonomically widespread behaviour that integrates across many traits. The European blackcap exhibits enormous variation in migration and is renowned for research on its evolution and genetic basis. We assembled a reference genome for blackcaps and obtained whole genome resequencing data from individuals across its breeding range. Analyses of population structure and demography suggested divergence began ~30,000 ya, with evidence for one admixture event between migrant and resident continent birds ~5000 ya. The propensity to migrate, orientation and distance of migration all map to a small number of genomic regions that do not overlap with results from other species, suggesting that there are multiple ways to generate variation in migration. Strongly associated single nucleotide polymorphisms (SNPs) were located in regulatory regions of candidate genes that may serve as major regulators of the migratory syndrome. Evidence for selection on shared variation was documented, providing a mechanism by which rapid changes may evolve.


2021 ◽  
Vol 140 (12) ◽  
pp. 1753-1773
Author(s):  
Andrew J. Pakstis ◽  
Neeru Gandotra ◽  
William C. Speed ◽  
Michael Murtha ◽  
Curt Scharfe ◽  
...  

AbstractSingle-nucleotide polymorphisms (SNPs) and small genomic regions with multiple SNPs (microhaplotypes, MHs) are rapidly emerging as novel forensic investigative tools to assist in individual identification, kinship analyses, ancestry inference, and deconvolution of DNA mixtures. Here, we analyzed information for 90 microhaplotype loci in 4009 individuals from 79 world populations in 6 major biogeographic regions. The study included multiplex microhaplotype sequencing (mMHseq) data analyzed for 524 individuals from 16 populations and genotype data for 3485 individuals from 63 populations curated from public repositories. Analyses of the 79 populations revealed excellent characteristics for this 90-plex MH panel for various forensic applications achieving an overall average effective number of allele values (Ae) of 4.55 (range 1.04–19.27) for individualization and mixture deconvolution. Population-specific random match probabilities ranged from a low of 10–115 to a maximum of 10–66. Mean informativeness (In) for ancestry inference was 0.355 (range 0.117–0.883). 65 novel SNPs were detected in 39 of the MHs using mMHseq. Of the 3018 different microhaplotype alleles identified, 1337 occurred at frequencies > 5% in at least one of the populations studied. The 90-plex MH panel enables effective differentiation of population groupings for major biogeographic regions as well as delineation of distinct subgroupings within regions. Open-source, web-based software is available to support validation of this technology for forensic case work analysis and to tailor MH analysis for specific geographical regions.


2019 ◽  
Vol 110 (6) ◽  
pp. 684-695 ◽  
Author(s):  
Alan Garcia-Elfring ◽  
Rowan D H Barrett ◽  
Virginie Millien

Abstract Identifying genetic variation involved in thermal adaptation is likely to yield insights into how species adapt to different climates. Physiological and behavioral responses associated with overwintering (e.g., torpor) are thought to serve important functions in climate adaptation. In this study, we use 2 isolated Peromyscus leucopus lineages on the northern margin of the species range to identify single nucleotide polymorphisms (SNPs) showing a strong environmental association and test for evidence of parallel evolution. We found signatures of clinal selection in each lineage, but evidence of parallelism was limited, with only 2 SNPs showing parallel allele frequencies across transects. These parallel SNPs map to a gene involved in protection against iron-dependent oxidative stress (Fxn) and to a gene with unknown function but containing a forkhead-associated domain (Fhad1). Furthermore, within transects, we find significant clinal patterns in genes enriched for functions associated with glycogen homeostasis, synaptic function, intracellular Ca2+ balance, H3 histone modification, as well as the G2/M transition of cell division. Our results are consistent with recent literature on the cellular and molecular basis of climate adaptation in small mammals and provide candidate genomic regions for further study.


Sign in / Sign up

Export Citation Format

Share Document