scholarly journals The evolutionary history and genomics of European blackcap migration

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Kira Delmore ◽  
Juan Carlos Illera ◽  
Javier Pérez-Tris ◽  
Gernot Segelbacher ◽  
Juan S Lugo Ramos ◽  
...  

Seasonal migration is a taxonomically widespread behaviour that integrates across many traits. The European blackcap exhibits enormous variation in migration and is renowned for research on its evolution and genetic basis. We assembled a reference genome for blackcaps and obtained whole genome resequencing data from individuals across its breeding range. Analyses of population structure and demography suggested divergence began ~30,000 ya, with evidence for one admixture event between migrant and resident continent birds ~5000 ya. The propensity to migrate, orientation and distance of migration all map to a small number of genomic regions that do not overlap with results from other species, suggesting that there are multiple ways to generate variation in migration. Strongly associated single nucleotide polymorphisms (SNPs) were located in regulatory regions of candidate genes that may serve as major regulators of the migratory syndrome. Evidence for selection on shared variation was documented, providing a mechanism by which rapid changes may evolve.

Genome ◽  
2018 ◽  
Vol 61 (9) ◽  
pp. 653-661 ◽  
Author(s):  
Shuo Li ◽  
Rongsong Luo ◽  
Defang Lai ◽  
Min Ma ◽  
Fei Hao ◽  
...  

The Ujumqin sheep is one of the most profitable breeds in China, with unique multi-vertebral characteristics. We performed high-throughput genome resequencing of five multi-vertebral and three non-multi-vertebral sheep in an Ujumqin population. We identified the genomic regions that correlated with the germplasm characteristics to establish the cause of the “multi-vertebral” phenotype in this breed. Sequencing generated a total of 314 952 000 000 bp of raw data. The alignment rate of all the samples was between 98.53% and 99.11%, and the mean depth of coverage relative to the reference genome was between 11.58× and 14.92×. After comparing the differences between the two groups, we identified 21 homozygous single nucleotide polymorphisms (SNPs) in the mutant exons of 14 genes. Nineteen loci of 10 genes contained nonsynonymous mutations, while two loci contained synonymous mutations. Resequencing revealed homozygous mutations comprised of 44 indels located within exons of 19 genes. These indels included 37 frameshift mutations, 6 non-frameshift mutations, and 1 stopgain single nucleotide variation (SNV). Finally, comparisons of genotypic variations revealed 17 genes with homozygous mutations in their coding regions, 5 of which have previously been associated with vertebral development and the remaining 12 genes were newly identified in this study.


Author(s):  
Gloria Pérez-Rubio ◽  
Luis Alberto López-Flores ◽  
Ana Paula Cupertino ◽  
Francisco Cartujano-Barrera ◽  
Luz Myriam Reynales-Shigematsu ◽  
...  

Previous studies have identified variants in genes encoding proteins associated with the degree of addiction, smoking onset, and cessation. We aimed to describe thirty-one single nucleotide polymorphisms (SNPs) in seven candidate genomic regions spanning six genes associated with tobacco-smoking in a cross-sectional study from two different interventions for quitting smoking: (1) thirty-eight smokers were recruited via multimedia to participate in e-Decídete! program (e-Dec) and (2) ninety-four attended an institutional smoking cessation program on-site. SNPs genotyping was done by real-time PCR using TaqMan probes. The analysis of alleles and genotypes was carried out using the EpiInfo v7. on-site subjects had more years smoking and tobacco index than e-Dec smokers (p < 0.05, both); in CYP2A6 we found differences in the rs28399433 (p < 0.01), the e-Dec group had a higher frequency of TT genotype (0.78 vs. 0.35), and TG genotype frequency was higher in the on-site group (0.63 vs. 0.18), same as GG genotype (0.03 vs. 0.02). Moreover, three SNPs in NRXN1, two in CHRNA3, and two in CHRNA5 had differences in genotype frequencies (p < 0.01). Cigarettes per day were different (p < 0.05) in the metabolizer classification by CYP2A6 alleles. In conclusion, subjects attending a mobile smoking cessation intervention smoked fewer cigarettes per day, by fewer years, and by fewer cumulative pack-years. There were differences in the genotype frequencies of SNPs in genes related to nicotine metabolism and nicotine dependence. Slow metabolizers smoked more cigarettes per day than intermediate and normal metabolizers.


2006 ◽  
Vol 04 (03) ◽  
pp. 639-647 ◽  
Author(s):  
ELEAZAR ESKIN ◽  
RODED SHARAN ◽  
ERAN HALPERIN

The common approaches for haplotype inference from genotype data are targeted toward phasing short genomic regions. Longer regions are often tackled in a heuristic manner, due to the high computational cost. Here, we describe a novel approach for phasing genotypes over long regions, which is based on combining information from local predictions on short, overlapping regions. The phasing is done in a way, which maximizes a natural maximum likelihood criterion. Among other things, this criterion takes into account the physical length between neighboring single nucleotide polymorphisms. The approach is very efficient and is applied to several large scale datasets and is shown to be successful in two recent benchmarking studies (Zaitlen et al., in press; Marchini et al., in preparation). Our method is publicly available via a webserver at .


Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 170 ◽  
Author(s):  
Zengkui Lu ◽  
Yaojing Yue ◽  
Chao Yuan ◽  
Jianbin Liu ◽  
Zhiqiang Chen ◽  
...  

Body weight is an important economic trait for sheep and it is vital for their successful production and breeding. Therefore, identifying the genomic regions and biological pathways that contribute to understanding variability in body weight traits is significant for selection purposes. In this study, the genome-wide associations of birth, weaning, yearling, and adult weights of 460 fine-wool sheep were determined using resequencing technology. The results showed that 113 single nucleotide polymorphisms (SNPs) reached the genome-wide significance levels for the four body weight traits and 30 genes were annotated effectively, including AADACL3, VGF, NPC1, and SERPINA12. The genes annotated by these SNPs significantly enriched 78 gene ontology terms and 25 signaling pathways, and were found to mainly participate in skeletal muscle development and lipid metabolism. These genes can be used as candidate genes for body weight in sheep, and provide useful information for the production and genomic selection of Chinese fine-wool sheep.


2019 ◽  
Vol 48 (D1) ◽  
pp. D659-D667 ◽  
Author(s):  
Wenqian Yang ◽  
Yanbo Yang ◽  
Cecheng Zhao ◽  
Kun Yang ◽  
Dongyang Wang ◽  
...  

Abstract Animal-ImputeDB (http://gong_lab.hzau.edu.cn/Animal_ImputeDB/) is a public database with genomic reference panels of 13 animal species for online genotype imputation, genetic variant search, and free download. Genotype imputation is a process of estimating missing genotypes in terms of the haplotypes and genotypes in a reference panel. It can effectively increase the density of single nucleotide polymorphisms (SNPs) and thus can be widely used in large-scale genome-wide association studies (GWASs) using relatively inexpensive and low-density SNP arrays. However, most animals except humans lack high-quality reference panels, which greatly limits the application of genotype imputation in animals. To overcome this limitation, we developed Animal-ImputeDB, which is dedicated to collecting genotype data and whole-genome resequencing data of nonhuman animals from various studies and databases. A computational pipeline was developed to process different types of raw data to construct reference panels. Finally, 13 high-quality reference panels including ∼400 million SNPs from 2265 samples were constructed. In Animal-ImputeDB, an easy-to-use online tool consisting of two popular imputation tools was designed for the purpose of genotype imputation. Collectively, Animal-ImputeDB serves as an important resource for animal genotype imputation and will greatly facilitate research on animal genomic selection and genetic improvement.


2021 ◽  
Author(s):  
Yu-Ming Hsu ◽  
Matthieu Falque ◽  
Olivier Martin

In essentially all species where meiotic crossovers have been studied, they occur preferentially in open chromatin, typically near gene promoters and to a lesser extent at the end of genes. Here, in the case of Arabidopsis thaliana, we unveil further trends arising when one considers contextual information, namely summarized epigenetic status, size of underlying genomic regions and degree of divergence between homologs. For instance we find that intergenic recombination rate is reduced if those regions are less than 1.5 kb in size. Furthermore, we propose that the presence of single nucleotide polymorphisms is a factor driving enhanced crossover rate compared to when homologous sequences are identical, in agreement with previous works comparing rates in homozygous and heterozygous blocks. Lastly, by integrating these different factors, we produce a quantitative and predictive model of the recombination landscape that reproduces much of the experimental variation.


2017 ◽  
Author(s):  
Débora Y. C. Brandt ◽  
Jônatas César ◽  
Jérôme Goudet ◽  
Diogo Meyer

ABSTRACTBalancing selection is defined as a class of selective regimes that maintain polymorphism above what is expected under neutrality. Theory predicts that balancing selection reduces population differentiation, as measured by FST. However, balancing selection regimes in which different sets of alleles are maintained in different populations could increase population differentiation. To tackle this issue, we investigated population differentiation at the HLA genes, which constitute the most striking example of balancing selection in humans. We found that population differentiation of single nucleotide polymorphisms (SNPs) at the HLA genes is on average lower than that of SNPs in other genomic regions. However, this result depends on accounting for the differences in allele frequency between selected and putatively neutral sites. Our finding of reduced differentiation at SNPs within HLA genes suggests a predominant role of shared selective pressures among populations at a global scale. However, in pairs of closely related populations, where genome-wide differentiation is low, differentiation at HLA is higher than in other genomic regions. This pattern was reproduced in simulations of overdominant selection. We conclude that population differentiation at the HLA genes is generally lower than genome-wide, but it may be higher for recently diverged population pairs, and that this pattern can be explained by a simple overdominance regime.


2021 ◽  
Vol 140 (12) ◽  
pp. 1753-1773
Author(s):  
Andrew J. Pakstis ◽  
Neeru Gandotra ◽  
William C. Speed ◽  
Michael Murtha ◽  
Curt Scharfe ◽  
...  

AbstractSingle-nucleotide polymorphisms (SNPs) and small genomic regions with multiple SNPs (microhaplotypes, MHs) are rapidly emerging as novel forensic investigative tools to assist in individual identification, kinship analyses, ancestry inference, and deconvolution of DNA mixtures. Here, we analyzed information for 90 microhaplotype loci in 4009 individuals from 79 world populations in 6 major biogeographic regions. The study included multiplex microhaplotype sequencing (mMHseq) data analyzed for 524 individuals from 16 populations and genotype data for 3485 individuals from 63 populations curated from public repositories. Analyses of the 79 populations revealed excellent characteristics for this 90-plex MH panel for various forensic applications achieving an overall average effective number of allele values (Ae) of 4.55 (range 1.04–19.27) for individualization and mixture deconvolution. Population-specific random match probabilities ranged from a low of 10–115 to a maximum of 10–66. Mean informativeness (In) for ancestry inference was 0.355 (range 0.117–0.883). 65 novel SNPs were detected in 39 of the MHs using mMHseq. Of the 3018 different microhaplotype alleles identified, 1337 occurred at frequencies > 5% in at least one of the populations studied. The 90-plex MH panel enables effective differentiation of population groupings for major biogeographic regions as well as delineation of distinct subgroupings within regions. Open-source, web-based software is available to support validation of this technology for forensic case work analysis and to tailor MH analysis for specific geographical regions.


2021 ◽  
Author(s):  
Huaxing Zhou ◽  
Tingshuang Pan ◽  
Huan Wang ◽  
He Jiang ◽  
Jun Ling ◽  
...  

Abstract The whole genome resequencing was used to develop single nucleotide polymorphisms (SNP) markers for the yellow catfish (Tachysurus fulvidraco). A total of 46 SNP markers were selected from 5550676 genotyping markers which distributed on 26 chromosomes. Of the 46 SNPs analyzed, 35 SNPs conformed to Hardy-Weinberg equilibrium. The observed and expected heterozygosity of these markers ranged from 0.2519 to 0.771 and from 0.265 to 0.5018, respectively. This set of markers will be of great useful for population genetics of the yellow catfish.


Sign in / Sign up

Export Citation Format

Share Document