scholarly journals The effects of disturbance and enemy exclusion on performance of an invasive species, common ragweed, in its native range

Oecologia ◽  
2010 ◽  
Vol 162 (4) ◽  
pp. 977-986 ◽  
Author(s):  
A. Andrew M. MacDonald ◽  
Peter M. Kotanen
2021 ◽  
Author(s):  
Nick Pasiecznik

Abstract C. peltata is an important pioneer species in its native range Americas following forest clearance. It has also been introduced into coffee plantations as a shade tree and into botanical gardens in Africa. However, its presence on the ISSG list of the 100 worst invasive species (ISSG, 2003) means that its notoriety as an invasive species may limit further introductions.


2021 ◽  
Author(s):  
Inês Cerveira ◽  
Vânia Baptista ◽  
Maria Alexandra Teodósio ◽  
Pedro Morais

Abstract Promoting the consumption of edible aquatic invasive species has gained popularity to minimize its impacts while easing pressure on native resources. Weakfish Cynoscion regalis (Bloch & Schneider, 1801) is one of the most recent invasive fish species in the Iberian Peninsula (Europe) which once sustained an important fishery in the native range (Northwest Atlantic Ocean). Portugal ranks third in the list of the world’s top fish consumers, so promoting a weakfish fishery could at least help minimize the impacts upon native species, since weakfish have innate traits that are likely appreciated by Portuguese fish consumers. However, introducing a new species to consumers is challenging owing to consumers’ habits and unfamiliarity with the species. So, we aimed to (i) evaluate the acceptance of weakfish by a panel of Portuguese fish consumers and (ii) create outreach actions – partnerships with local Chefs and press releases – to explain to a broader public what invasive species are and promote the consumption of edible aquatic invasive species. The survey that we conducted to Portuguese fish consumers showed that weakfish has great chances of being well accepted by the public – 90% of consumers would buy weakfish because they appreciated its appearance, flavour, and texture, besides being a wild fish. The outreach actions reached a few million people because 46 online articles were published, and three news pieces broadcasted on national television. Overall, our strategy greatly increased the public’s awareness about invasive species, which can be replicated elsewhere in the world.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jamie Bojko ◽  
Kuttichantran Subramaniam ◽  
Thomas B. Waltzek ◽  
Grant D. Stentiford ◽  
Donald C. Behringer

Abstract Carcinus maenas is in the top 100 globally invasive species and harbours a wide diversity of pathogens, including viruses. We provide a detailed description for a novel bunyavirus (Carcinus maenas Portunibunyavirus 1) infecting C. maenas from its native range in the Faroe Islands. The virus genome is tripartite, including large (L) (6766 bp), medium (M) (3244 bp) and small (S) (1608 bp) negative sense, single-stranded RNA segments. Individual genomic segments are flanked by 4 bp regions of similarity (CCUG). The segments encode an RNA-dependent RNA-polymerase, glycoprotein, non-structural protein with a Zinc-Finger domain and a nucleoprotein. Most show highest identity to the ‘Wenling Crustacean Virus 9’ from an unidentified crustacean host. Phylogenomics of crustacean-infecting bunyaviruses place them across multiple bunyavirus families. We discuss the diversity of crustacean bunyaviruses and provide an overview of how these viruses may affect the health and survival of crustacean hosts, including those inhabiting niches outside of their native range.


2021 ◽  
Author(s):  
Anna Aldorfová ◽  
Věra Hanzelková ◽  
Lucie Drtinová ◽  
Hana Pánková ◽  
Tomáš Cajthaml ◽  
...  

Abstract Purpose: To compare plant-soil feedback (PSF) of invasive Cirsium vulgare and non-invasive C. oleraceum in their native range to test a hypothesis that the invasive species is more limited by specialized pathogens in the native range and/or able to benefit more from generalist mutualists, and thus may benefit more from loss of specialized soil biota in a secondary range.Methods: We assessed changes in soil nutrients and biota following soil conditioning by each species and compared performance of plants grown in self-conditioned and control soil, from which all, some or no biota was excluded. Results: The invasive species depleted more nutrients than the non-invasive species and coped better with altered nutrient levels. The invasive species had higher seedling emergence which benefited from presence of non-specific microbes. The invasive species biomass responded less positively to specialized (self-conditioned) microbiota and more negatively to specialized larger-sized biota compared to the non-specialized control biota, suggesting the species may benefit more from enemy release and suffer less from loss of specialized mutualists when introduced to a secondary range. The invasive species showed greater ability to decrease its root-shoot ratio in presence of harmful biota and thus reduce their negative effects on its performance.Conclusions: Our study highlights the utility of detailed PSF research in the native range of species for understanding the factors that regulate performance of invasive and non-invasive species in their native range, and for pinpointing the types of biota involved in their regulation and how this changes across the plants life cycle.


2020 ◽  
Author(s):  
Sylvan Kaufman

Abstract Zingiber capitatum is a herbaceous, perennial plant that spreads by rhizomes and possibly also by seed. It is native to India and is probably also native to Bangladesh and Nepal. It has medicinal properties and is likely to have been introduced to countries outside its native range for horticultural use. It is cultivated in Brazil and is also present in China and Vietnam. It is described as an invasive, transformer species in Cuba, but this is thought to be a misidentification. It is not listed as a weed or invasive species in any other country and information on its possible impact on habitats or biodiversity outside of its native range is lacking.


2021 ◽  
Author(s):  
André Gassmann ◽  
Chris Parker

Abstract L. vulgaris is a perennial flowering plant with a spreading root system. It forms dense mats which can compete with crops and suppress native vegetation, reducing pasture productivity and/or biodiversity (ISSG, 2015). Native to temperate areas of Europe and Asia, it has been widely introduced to North America, Australia, New Zealand and South Africa, and is regarded as noxious in many of these countries. By inclusion in indexes of invasive species it is regarded as invasive widely in Canada and in the USA (Alberta Invasive Species Council, 2014; Invasive Plant Atlas of the United States, 2015). L. vulgaris received an invasive index of 69 (out of a maximum of 100) in Alaska, USA (ANHP, 2011). It is also regarded as invasive within its native range in Serbia (Dzigurski and Nikolic, 2014).


Parasitology ◽  
2002 ◽  
Vol 124 (7) ◽  
pp. 137-151 ◽  
Author(s):  
M. E. TORCHIN ◽  
K. D. LAFFERTY ◽  
A. M. KURIS

Introduced marine species are a major environmental and economic problem. The rate of these biological invasions has substantially increased in recent years due to the globalization of the world's economies. The damage caused by invasive species is often a result of the higher densities and larger sizes they attain compared to where they are native. A prominent hypothesis explaining the success of introduced species is that they are relatively free of the effects of natural enemies. Most notably, they may encounter fewer parasites in their introduced range compared to their native range. Parasites are ubiquitous and pervasive in marine systems, yet their role in marine invasions is relatively unexplored. Although data on parasites of marine organisms exist, the extent to which parasites can mediate marine invasions, or the extent to which invasive parasites and pathogens are responsible for infecting or potentially decimating native marine species have not been examined. In this review, we present a theoretical framework to model invasion success and examine the evidence for a relationship between parasite presence and the success of introduced marine species. For this, we compare the prevalence and species richness of parasites in several introduced populations of marine species with populations where they are native. We also discuss the potential impacts of introduced marine parasites on native ecosystems.


Sign in / Sign up

Export Citation Format

Share Document