scholarly journals Immune function differs among tropical environments but is not downregulated during reproduction in three year-round breeding equatorial lark populations

Oecologia ◽  
2021 ◽  
Author(s):  
Henry K. Ndithia ◽  
Kevin D. Matson ◽  
Muchane Muchai ◽  
B. Irene Tieleman

AbstractSeasonal variation in immune function can be attributed to life history trade-offs, and to variation in environmental conditions. However, because phenological stages and environmental conditions co-vary in temperate and arctic zones, their separate contributions have not been determined. We compared immune function and body mass of incubating (female only), chick-feeding (female and male), and non-breeding (female and male) red-capped larks Calandrella cinerea breeding year-round in three tropical equatorial (Kenya) environments with distinct climates. We measured four immune indices: haptoglobin, nitric oxide, agglutination, and lysis. To confirm that variation in immune function between breeding (i.e., incubating or chick-feeding) and non-breeding was not confounded by environmental conditions, we tested if rainfall, average minimum temperature (Tmin), and average maximum temperature (Tmax) differed during sampling times among the three breeding statuses per location. Tmin and Tmax differed between chick-feeding and non-breeding, suggesting that birds utilized environmental conditions differently in different locations for reproduction. Immune indices did not differ between incubating, chick-feeding and non-breeding birds in all three locations. There were two exceptions: nitric oxide was higher during incubation in cool and wet South Kinangop, and it was higher during chick-feeding in the cool and dry North Kinangop compared to non-breeding birds in these locations. For nitric oxide, agglutination, and lysis, we found among-location differences within breeding stage. In equatorial tropical birds, variation in immune function seems to be better explained by among-location climate-induced environmental conditions than by breeding status. Our findings raise questions about how within-location environmental variation relates to and affects immune function.

Author(s):  
Swati Thangariyal ◽  
Aayushi Rastogi ◽  
Arvind Tomar ◽  
Ajeet Bhadoria ◽  
Sukriti Baweja

AbstractBackgroundThe coronavirus pandemic (COVID-19) control has now become a critical issue for public health. Many ecological factors are proven to influence the transmission and survival of the virus. In this study, we aim to determine the association of different climate factors with the spread and mortality due to COVID-19.MethodsThe climate indicators included in the study were duration of sunshine, average minimum temperature and average maximum temperature, with cumulative confirmed cases, deceased and recovered cases. The data was performed for 138 different countries of the world, between January 2020 to May 2020. Both univariate and multivariate was performed for cumulative and month-wise analysis using SPSS software.ResultsThe average maximum temperature, and sunshine duration was significantly associated with COVID-19 confirmed cases, deceased and recovered. For every one degree increase in mean average temperature, the confirmed, deceased and recovered cases decreased by 2047(p=0.03), 157(p=0.016), 743 (p=0.005) individuals. The association remained significant even after adjusting for environmental such as sunshine duration as well as non-environmental variables. Average sunshine duration was inveserly correlated with increase in daily new cases (ρ= -2261) and deaths (ρ= -0.2985).ConclusionHigher average temperature and longer sunshine duration was strongly associated with COVID-19 cases and deaths in 138 countries. Hence the temperature is an important factor in SARS CoV-2 survival and this study will help in formulating better preventive measures to combat COVID-19 based on their climatic conditions.


Author(s):  
Douglas Matheus das Neves Santos ◽  
Yuri Antônio da Silva Rocha ◽  
Danúbia Freitas ◽  
Paulo Beltrão ◽  
Paulo Santos Junior ◽  
...  

Statistical and mathematical models of forecasting are of paramount importance for the understanding and study of databases, especially when applied to data of climatological variables, which enables the atmospheric study of a city or region, enabling greater management of the anthropic activities and actions that suffer the direct or indirect influence of meteorological parameters, such as precipitation and temperature. Therefore, this article aimed to analyze the behavior of monthly time series of Average Minimum Temperature, Average Maximum Temperature, Average Compensated Temperature, and Total Precipitation in Belém (Pará, Brazil) on data provided by INMET, for the production and application forecasting models. A 30-year time series was considered for the four variables, from January 1990 to December 2020. The Box and Jenkins methodology was used to determine the statistical models, and during their applications, models of the SARIMA and Holt-Winters class were estimated. For the selection of the models, analyzes of the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Autocorrelation Correlogram (ACF), and Partial Autocorrelation (PACF) and tests such as Ljung-Box and Shapiro-Wilk were performed, in addition to Mean Square Error (NDE) and Absolute Percent Error Mean (MPAE) to find the best accuracy in the predictions. It was possible to find three SARIMA models: (0,1,2) (1,1,0) [12], (1,1,1) (0,0,1) [12], (0,1,2) (1,1,0) [12]; and a Holt-Winters model with additive seasonality. Thus, we found forecasts close to the real data for the four-time series worked from the SARIMA and Holt-Winters models, which indicates the feasibility of its applicability in the study of weather forecasting in the city of Belém. However, it is necessary to apply other possible statistical models, which may present more accurate forecasts.


Author(s):  
LIPON CHANDRA DAS ◽  
ZHIHUA ZHANG

Based on temperature and rainfall recorded at 34 meteorological stations in Bangladesh during 1989–2018, the trends of yearly average maximum and minimum temperatures have been found to be increasing at the rates of 0.025∘C and 0.018∘C per year. Analysis of seasonal average maximum temperature showed increasing trend for all seasons except the late autumn season. The increasing trend was particularly significant for summer, rainy and autumn seasons. Seasonal average minimum temperature data also showed increasing trends for all seasons. The trend of yearly average rainfall has been found to be decreasing at a rate of 0.014[Formula: see text]mm per year in the same period; especially, for most of the meteorological stations the rainfall demonstrates an increasing trend for rainy season and a decreasing trend in the winter season. It means that in Bangladesh dry periods became drier and wet periods became wetter.


2014 ◽  
Vol 5 (2) ◽  
pp. 111-122 ◽  
Author(s):  
Ajay Kumar

This study provides an understanding for the relationship between climatic factors and sugarcane productivity in India. The main objective of this paper is to estimates the impact of climatic and non-climatic factors on sugarcane productivity. To check the consistency of empirical results, simple linear regression model, Ricardian productivity regression (non-linear) model and Cobb-Douglas production function models are employed. The data set incorporates 390 observations corresponding to thirteen states with panel data for 30 years during 1980 to 2009. These all models include sugarcane productivity as dependent variable. Irrigated area, agriculture labour, consumption of fertilizers, literacy rate, tractors and farm harvest price (at constant level) are considered as explanatory variables. Average rainfall, average maximum and average minimum temperature include as climatic factors to capture the effect of climatic conditions on cane productivity. These climatic factors are incorporate for three weather seasons such as rainy, winter and summer. Empirical results based on Prais Winsten models with panels corrected standard errors (PCSEs) estimation shows that climatic factors i.e. actual rainfall, average maximum and average minimum temperature have a statistically significant impact on sugarcane productivity. The climatic effect for various factors on cane productivity are varies within different seasons. Average maximum temperature in summer and average minimum temperature in rainy season have a negative and statistically significant effect on sugarcane productivity. While, sugarcane productivity positively get affect with increasing average maximum temperature in rainy season and winter seasons. The study concluded that there is non-linear relationship between climatic factors and sugarcane productivity in India.


2017 ◽  
Vol 5 (3) ◽  
pp. 345-355
Author(s):  
Kapil Khanal ◽  
Subodh Khanal ◽  
Surya Mani Dhungana

A survey research was conducted in Sauraha-Pharsatikar VDC of the Rupandehi district to study the perspective response of the farming communities on the impacts of the climate change in agricultural crops. Primary information was collected from household survey by administering pre-tested questionnaire and necessary data were collected from National Wheat Research Project (NWRP), Bhairahawa. Several results are obtained on the recall basis of the respondents thus they can not assumed correctly and all the past information provided by the farmers cannot be cross checked due to the lack of sufficient and reliable system for recording and checking. The trend analysis of rainfall data of Bhairahawa of 30 years (1984-2013) showed that the pattern of rainfall was irregular and it was in a decreasing trend by 1.944 mm per year and average maximum temperature has increased by 0.0.15oC and average minimum temperature has increased by 0.0.61oC per year which justifies that the summers are growing hotter and winters are growing warmer. About 52% of the respondents suggested monsoon starts earlier, 85% suggested there is more intense rain during the monsoon and 91.75% suggested drought has increased. 98.33% of the respondents perceived that the summer has become hotter. In general there is increase in the yield of cereal crops whereas the yield of pulses, legumes and vegetables had declined. Int. J. Appl. Sci. Biotechnol. Vol 5(3): 345-355


2015 ◽  
Vol 6 (1) ◽  
pp. 79-87 ◽  
Author(s):  
MR Amin ◽  
SM Tareq ◽  
SH Rahman

An attempt was made to explore correlation between climate variables and Kala-azar prevalence at four highly affected districts in Bangladesh: Mymensingh, Tangail, Pabna, and Rajshahi. The climate variables included were temperature, rainfall and relative humidity. With the rise of yearly average humidity in Mymensingh, Tangail and Rajshahi districts Kala-azar prevalence was significantly increased and with the rise of yearly total rainfall positive but not significant correlation was observed in Mymensingh,Tangail and Rajshahi. In Mymensingh negative correlation was found with yearly average maximum and minimum temperature. Positive association with yearly total rainfall in Mymensingh, Pabna & Rajshahi and yearly average minimum temperature in Rajshahi and yearly average maximum temperature in Tangail was observed. The prevalence of the disease was found to have negative correlation with yearly average maximum temperature in both Pabna & Rajshahi, yearly average minimum temperature in both Tangail & Pabna and yearly total rainfall in Tangail.DOI: http://dx.doi.org/10.3329/jesnr.v6i1.22045 J. Environ. Sci. & Natural Resources, 6(1): 79-87 2013


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 71 ◽  
Author(s):  
Hua Zhou ◽  
Yang Luo ◽  
Guang Zhou ◽  
Jian Yu ◽  
Sher Shah ◽  
...  

Subtropical forest productivity is significantly affected by both natural disturbances (local and regional climate changes) and anthropogenic activities (harvesting and planting). Monthly measures of forest aboveground productivity from natural forests (primary and secondary forests) and plantations (mixed and single-species forests) were developed to explore the sensitivity of subtropical mountain productivity to the fluctuating characteristics of climate change in South China, spanning the 35-year period from 1981 to 2015. Statistical analysis showed that climate regulation differed across different forest types. The monthly average maximum temperature, precipitation, and streamflow were positively correlated with primary and mixed-forest aboveground net primary productivity (ANPP) and its components: Wood productivity (WP) and canopy productivity (CP). However, the monthly average maximum temperature, precipitation, and streamflow were negatively correlated with secondary and single-species forest ANPP and its components. The number of dry days and minimum temperature were positively associated with secondary and single-species forest productivity, but inversely associated with primary and mixed forest productivity. The multivariate ENSO (EI Niño-Southern Oscillation) index (MEI), computed based on sea level pressure, surface temperature, surface air temperature, and cloudiness over the tropical Pacific Ocean, was significantly correlated with local monthly maximum and minimum temperatures (Tmax and Tmin), precipitation (PRE), streamflow (FLO), and the number of dry days (DD), as well as the monthly means of primary and mixed forest aboveground productivity. In particular, the mean maximum temperature increased by 2.5, 0.9, 6.5, and 0.9 °C, and the total forest aboveground productivity decreased by an average of 5.7%, 3.0%, 2.4%, and 7.8% in response to the increased extreme high temperatures and drought events during the 1986/1988, 1997/1998, 2006/2007, and 2009/2010 EI Niño periods, respectively. Subsequently, the total aboveground productivity values increased by an average of 1.1%, 3.0%, 0.3%, and 8.6% because of lagged effects after the wet La Niña periods. The main conclusions of this study demonstrated that the influence of local and regional climatic fluctuations on subtropical forest productivity significantly differed across different forests, and community position and plant diversity differences among different forest types may prevent the uniform response of subtropical mountain aboveground productivity to regional climate anomalies. Therefore, these findings may be useful for forecasting climate-induced variation in forest aboveground productivity as well as for selecting tree species for planting in reforestation practices.


1989 ◽  
Vol 7 (6) ◽  
pp. 798-802 ◽  
Author(s):  
S K Williford ◽  
P L Salisbury ◽  
J E Peacock ◽  
J M Cruz ◽  
B L Powell ◽  
...  

Dental disorders have been recognized as major sources of infection in patients with hematologic malignancies (HM). Management of severe dental infections usually includes dental extractions (DE), but the safety of extractions in patients with HM who are at risk for bleeding, sepsis, and poor wound healing has not been well established. In conjunction with an aggressive program of dental care, 142 DE were performed in 26 patients with acute leukemia, myelodysplastic syndromes, and myeloproliferative disorders. Granulocytopenia (less than 1,000 granulocytes/microL) was present during or within ten days following surgery in 14 patients. In these 14 patients (101 DE), the mean granulocyte count was less than 450/microL, with a median duration of granulocytopenia following surgery of 32 days (range, four to 169 days). Thrombocytopenia (less than 100,000 platelets/microL) occurred during or within two days following surgery in 13 patients (80 DE), with a mean platelet count of 63,500/microL. Transfusions were given for platelet counts less than 50,000/microL. All DE were performed without significant complications. Bleeding was minor to moderate and easily controlled with local measures; no patient required transfusion due to hemorrhage. Average maximum temperature 24 hours after DE was 37.7 degrees C. No episodes of bacteremia were documented within ten days of DE. Minor delay in wound healing was observed in two patients. We conclude that DE can be safely performed in patients with HM in combination with aggressive supportive care.


2002 ◽  
Vol 138 (1) ◽  
pp. 97-102 ◽  
Author(s):  
M. MELLADO ◽  
C. A. MEZA-HERRERA

Conception rate and prolificacy of dairy and crossbred goats under intensive conditions in an arid environment of northern Mexico (26° 06′ 15′′ N; maximum temperature throughout the year 12–42 °C, mean annual precipitation 186 mm, and RH <40% year-round) were examined with respect to season of mating, ambient temperature and rainfall at mating. The database contained 4194 natural services. Conception of goats inseminated with average maximum ambient temperatures >34 °C was significantly higher (P<0·01) than conception of goats inseminated when the average maximum temperature 3 days before breeding was <34 °C. The warmest season favoured conception rate (70% in spring; P<0·01) as compared to cooler seasons (62% and 64% for summer and autumn, respectively). Conception rate of goats bred when rain was present was 14 percentage points lower (P<0·01) compared to mating with no rain. When maximum temperatures on the day of mating were >34 °C, cooler temperatures 1 to 3 days before or after the day of mating were associated with a significant increase in the number of kids born. When the maximum temperature at mating was >36 °C, prolificacy for goats exposed to higher or lower temperatures 1 day before mating was 1·56 and 1·65, respectively (P<0·05). Similarly, when the maximum temperature at mating was 34–36 °C, prolificacy was higher for goats exposed to cooler temperatures as compared to warmer temperatures 1 day (1·64 v. 1·49; P<0·01) or 3 days (1·63 v. 1·48; P<0·01) after mating, with respect to the temperature on the day of mating. Conclusions were that conception rate was not compromised in non-lactating Alpine, Toggenburg, Granadino and Nubian goats subjected to high environmental temperature in an arid region, but the occurrence of rain at mating depressed breeding efficiency of these animals. Additionally, an increment in litter size is expected with cooler temperatures before or after hot days at time of mating.


2012 ◽  
Vol 516-517 ◽  
pp. 395-400
Author(s):  
Zhong Yi Yu ◽  
Yan Hua Chen ◽  
Min Rui Zhou ◽  
Jian Ping Lei

This paper progresses to dynamically simulate and study the heat transfer process of horizontal ground heat exchangers in the multi-grooves by the use of numerical simulation based on the layout and heat extraction or rejection conditions of horizontal ground heat exchangers under the artificial lake. Effect of buried pipe type and groove spacing on the heat exchanger process is analyzed in detail. The influence of annual average water temperature change on the surrounding environment is evaluated with the introduction of parameters including summer weekly average maximum temperature rise and winter weekly average maximum temperature drop, in which can take the technical supports for the design of horizontal ground source heat pump system.


Sign in / Sign up

Export Citation Format

Share Document