scholarly journals Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses

Oecologia ◽  
2002 ◽  
Vol 130 (3) ◽  
pp. 449-457 ◽  
Author(s):  
D. Ackerly ◽  
C. Knight ◽  
S. Weiss ◽  
K. Barton ◽  
K. Starmer
1996 ◽  
Vol 44 (1) ◽  
pp. 31-42
Author(s):  
J. Vos ◽  
H. Biemond ◽  
P.C. Struik

In a greenhouse pot experiment with Brussels sprouts grown in sand, 4 treatments were compared: a control without N limitation, a continuously N-deficient control and 2 treatments with a switch from the high to the low supply or vice versa. All treatments received nutrient solution at 9 dates during the experiment. The high-N and low-N controls received 1.96 and 0.56 g/application, respectively. In the high-low treatment the switch from the higher to the lower application rate took place 57 days after planting (DAP) and in the low high treatment the reverse switch took place 85 DAP; these 2 treatments received the same total amount of N. Plant N concentrations changed rapidly upon changes in N supply regime. When the supply rate was increased, N concentration increased in leaves that had completed their expansion. Changes in leaf growth started about 15 days after the switch in N regime. Leaves that were expanding at the switch responded by increase in area when N supply increased without a change in mass, i.e. specific leaf area increased. Leaf areas and specific leaf area of expanding leaves decreased when the N supply became smaller. The control of leaf size during initiation and expansion is discussed.


2010 ◽  
Vol 34 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Roberto Santos Trindade ◽  
Adelson Paulo Araújo ◽  
Marcelo Grandi Teixeira

Low phosphorus supply markedly limits leaf growth and genotypes able to maintain adequate leaf area at low P could adapt better to limited-P conditions. This work aimed to investigate the relationship between leaf area production of common bean (Phaseolus vulgaris) genotypes during early pod filling and plant adaptation to limited P supply. Twenty-four genotypes, comprised of the four growth habits in the species and two weedy accessions, were grown at two P level applied to the soil (20 and 80 mg kg-1) in 4 kg pots and harvested at two growth stages (pod setting and early pod filling). High P level markedly increased the leaf number and leaf size (leaf area per leaf), slightly increased specific leaf area but did not affect the net assimilation rate. At low P level most genotypic variation for plant dry mass was associated with leaf size, whereas at high P level this variation was associated primarily with the number of leaves and secondarily with leaf size, specific leaf area playing a minor role at both P level. Determinate bush genotypes presented a smaller leaf area, fewer but larger leaves with higher specific leaf area and lower net assimilation rate. Climbing genotypes showed numerous leaves, smaller and thicker leaves with a higher net assimilation rate. Indeterminate bush and indeterminate prostrate genotypes presented the highest leaf area, achieved through intermediate leaf number, leaf size and specific leaf area. The latter groups were better adapted to limited P. It is concluded that improved growth at low P during early pod filling was associated with common bean genotypes able to maintain leaf expansion through leaves with greater individual leaf area.


Botany ◽  
2019 ◽  
Vol 97 (11) ◽  
pp. 627-638 ◽  
Author(s):  
Sahari Inoue ◽  
Qing-Lai Dang ◽  
Rongzhou Man ◽  
Binyam Tedla

Tree migration to higher latitudes may occur in response to future changes in climate, exposing the trees to higher concentrations of carbon dioxide ([CO2]), new photoperiods, different levels of soil moisture, and other new conditions. These new conditions can influence the physiology, survival, and growth of trees. This study examined the interactive effects of [CO2], photoperiod, and soil moisture on the morphology and resistance to xylem cavitation in trembling aspen (Populus tremuloides Michx.). One-year-old seedlings, in greenhouses, were exposed to two [CO2] (ambient [CO2] 400 μmol·mol−1 or an elevated [CO2] 1000 μmol·mol−1), four photoperiod regimes corresponding to latitudes 48°N (seed origin), 52°N, 55°N, and 58°N, and two levels of soil moisture (60%–75% and 13%–20% of field capacity) for one growing season. Seedling growth, leaf size, specific leaf area, biomass allocation, and xylem resistance to cavitation (water potentials for 20%, 50%, and 80% loss of hydraulic conductivity) were assessed. The seedlings under the longest photoperiod regime (58°N latitude) had greatest height and biomass but smallest specific leaf area. Under the elevated [CO2], however, the longest photoperiod regime significantly reduced xylem resistance to drought-induced cavitation compared with the photoperiod corresponding to 48°N. These results suggest that when migrating to higher latitudes, trembling aspen may grow faster but could become less resistant to drought and more prone to hydraulic failure during a drought spell.


2019 ◽  
Vol 70 (6) ◽  
pp. 555
Author(s):  
Rose Brinkhoff ◽  
Meagan Porter ◽  
Mark J. Hovenden

Plant morphology and architecture are essential characteristics for all plants, but perhaps most importantly for agricultural species because economic traits are linked to simple features such as blade length and plant height. Key morphological traits likely respond to CO2 concentration ([CO2]), and the degree of this response could be influenced by water availability; however, this has received comparatively little research attention. This study aimed to determine the impacts of [CO2] on gross morphology of perennial ryegrass (Lolium perenne L.), the most widespread temperate pasture species, and whether these impacts are influenced by water availability. Perennial ryegrass cv. Base AR37 was grown in a well-fertilised FACE (free-air carbon dioxide enrichment) experiment in southern Tasmania. Plants were exposed to three CO2 concentrations (~400 (ambient), 475 and 550 µmol mol–1) at three watering-treatment levels (adequate, limited and excess). Shoot dry weight, height, total leaf area, leaf-blade separation, leaf size, relative water content and specific leaf area were determined, as well as shoot density per unit area as a measure of tillering. Plant morphology responded dramatically to elevated [CO2], plants being smaller with shorter leaf-blade separation lengths and smaller leaves than in ambient (control) plots. Elevated [CO2] increased tillering but did not substantially affect relative water content or specific leaf area. Water supply did not affect any measured trait or the response to elevated [CO2]. Observed impacts of elevated [CO2] on the morphology of a globally important forage crop could have profound implications for pasture productivity. The reductions in plant and leaf size were consistent across a range of soil-water availability, indicating that they are likely to be uniform. Elucidating the mechanisms driving these responses will be essential to improving predictability of these changes and may assist in breeding varieties suited to future conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jorge Palomo-Kumul ◽  
Mirna Valdez-Hernández ◽  
Gerald A. Islebe ◽  
Manuel J. Cach-Pérez ◽  
José Luis Andrade

AbstractWe evaluated the effect of ENSO 2015/16 on the water relations of eight tree species in seasonally dry tropical forests of the Yucatan Peninsula, Mexico. The functional traits: wood density, relative water content in wood, xylem water potential and specific leaf area were recorded during the rainy season and compared in three consecutive years: 2015 (pre-ENSO conditions), 2016 (ENSO conditions) and 2017 (post-ENSO conditions). We analyzed tree size on the capacity to respond to water deficit, considering young and mature trees, and if this response is distinctive in species with different leaf patterns in seasonally dry tropical forests distributed along a precipitation gradient (700–1200 mm year−1). These traits showed a strong decrease in all species in response to water stress in 2016, mainly in the driest site. Deciduous species had lower wood density, higher predawn water potential and higher specific leaf area than evergreen species. In all cases, mature trees were more tolerant to drought. In the driest site, there was a significant reduction in water status, regardless of their leaf phenology, indicating that seasonally dry tropical forests are highly vulnerable to ENSO. Vulnerability of deciduous species is intensified in the driest areas and in the youngest trees.


2021 ◽  
Vol 130 ◽  
pp. 108058
Author(s):  
Zhaogang Liu ◽  
Ning Dong ◽  
Hongxiang Zhang ◽  
Ming Zhao ◽  
Tingting Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document