scholarly journals Phase transition of the 2-Choices dynamics on core–periphery networks

Author(s):  
Emilio Cruciani ◽  
Emanuele Natale ◽  
André Nusser ◽  
Giacomo Scornavacca

AbstractThe 2-Choices dynamics is a process that models voting behavior on networks and works as follows: Each agent initially holds either opinion blue or red; then, in each round, each agent looks at two random neighbors and, if the two have the same opinion, the agent adopts it. We study its behavior on a class of networks with core–periphery structure. Assume that a densely-connected subset of agents, the core, holds a different opinion from the rest of the network, the periphery. We prove that, depending on the strength of the cut between core and periphery, a phase-transition phenomenon occurs: Either the core’s opinion rapidly spreads across the network, or a metastability phase takes place in which both opinions coexist for superpolynomial time. The interest of our result, which we also validate with extensive experiments on real networks, is twofold. First, it sheds light on the influence of the core on the rest of the network as a function of its connectivity toward the latter. Second, it is one of the first analytical results which shows a heterogeneous behavior of a simple dynamics as a function of structural parameters of the network.

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 420
Author(s):  
Ang Deng ◽  
Wonkeun Chang

We numerically investigate the effect of scaling two key structural parameters in antiresonant hollow-core fibers—dielectric wall thickness of the cladding elements and core size—in view of low-loss mid-infrared beam delivery. We demonstrate that there exists an additional resonance-like loss peak in the long-wavelength limit of the first transmission band in antiresonant hollow-core fibers. We also find that the confinement loss in tubular-type hollow-core fibers depends strongly on the core size, where the degree of the dependence varies with the cladding tube size. The loss scales with the core diameter to the power of approximately −5.4 for commonly used tubular-type hollow-core fiber designs.


Author(s):  
Barış Erdil ◽  
Mücip Tapan ◽  
İsmail Akkaya ◽  
Fuat Korkut

The October 23, 2011 (Mw = 7.2) and November 9, 2011 (Mw = 5.6) earthquakes increased the damage in the minaret of Van Ulu Mosque, an important historical masonry structure built with solid bricks in Eastern Turkey, resulting in significant shear cracks. It was found that since the door and window openings are not symmetrically placed, they result in unsymmetrical stiffness distribution. The contribution of staircase and the core on stiffness is ignorable but its effect on the mass is significant. The pulpit with chamfered corner results in unsymmetrical transverse displacements. Brace wall improves the stiffness however contributes to the unsymmetrical behaviour considerably. The reason for the diagonal cracks can be attributed to the unsymmetrical brace wall and the chamfered pulpit but the effect of brace wall is more pronounced. After introducing the cracks, a new model was created and calibrated according to the results of Operational Modal Analysis. Diagonal cracks were found to be likely to develop under earthquake loading. Drifts are observed to increase significantly upon the introduction of the cracks.


2020 ◽  
Vol 498 (1) ◽  
pp. 205-222
Author(s):  
João F C Santos ◽  
Francisco F S Maia ◽  
Bruno Dias ◽  
Leandro de O Kerber ◽  
Andrés E Piatti ◽  
...  

ABSTRACT We provide a homogeneous set of structural parameters of 83 star clusters located at the periphery of the Small Magellanic Cloud (SMC) and the Large Magellanic Cloud (LMC). The clusters’ stellar density and surface brightness profiles were built from deep, AO assisted optical images, and uniform analysis techniques. The structural parameters were obtained from King and Elson et al. model fittings. Integrated magnitudes and masses (for a subsample) are also provided. The sample contains mostly low surface brightness clusters with distances between 4.5 and 6.5 kpc and between 1 and 6.5 kpc from the LMC and SMC centres, respectively. We analysed their spatial distribution and structural properties, comparing them with those of inner clusters. Half-light and Jacobi radii were estimated, allowing an evaluation of the Roche volume tidal filling. We found that: (i) for our sample of LMC clusters, the tidal radii are, on average, larger than those of inner clusters from previous studies; (ii) the core radii dispersion tends to be greater for LMC clusters located towards the southwest, with position angles of ∼200° and about ∼5° from the LMC centre, i.e. those LMC clusters nearer to the SMC; (iii) the core radius evolution for clusters with known age is similar to that of inner clusters; (iv) SMC clusters with galactocentric distances closer than 4 kpc are overfilling; (v) the recent Clouds collision did not leave marks on the LMC clusters’ structure that our analysis could reveal.


2012 ◽  
Vol 49 (3) ◽  
pp. 731-744
Author(s):  
Wenbo V. Li ◽  
Vladislav V. Vysotsky

Suppose that both you and your friend toss an unfair coin n times, for which the probability of heads is equal to α. What is the probability that you obtain at least d more heads than your friend if you make r additional tosses? We obtain asymptotic and monotonicity/convexity properties for this competing probability as a function of n, and demonstrate surprising phase transition phenomenon as the parameters d, r, and α vary. Our main tools are integral representations based on Fourier analysis.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4210 ◽  
Author(s):  
Pathak ◽  
Rahman ◽  
Singh ◽  
Kumari

In the present paper, a new kind of concave shaped refractive index sensor (CSRIS) exploiting localized surface plasmon resonance (LSPR) is proposed and numerically optimized. The LSPR effect between polaritons and the core guided mode of designed CSRIS is used to enhance the sensing performance. The sensor is characterized for two types of sensing structures coated with gold (Au) film and Au nanowires (AuNWs), respectively. The influence of structural parameters such as the distance (D) of the concave shaped channel (CSC) from the core, the diameter of the nanowire (dn) and the size (s) of the CSC are investigated here. In comparison to Au film, the AuNWs are shown to significantly enhance the sensitivity and the performance of the designed sensor. An enhanced sensitivity of 4471 nm/RIU (refractive index unit) is obtained with AuNWs, for a wide range of analytes refractive index (na) varying between 1.33 to 1.38. However, for conventional Au film; the sensitivity of 808.57 nm/RIU is obtained for the same range of analytes.


2013 ◽  
Vol 834-836 ◽  
pp. 152-155
Author(s):  
Gu Xia Wang ◽  
Sheng Wei Guo ◽  
Wei Bing Xu

Polymer phase change microcapsules were prepared through microwave-assisted emulsion polymerization, with the core of hexadecane, the shell of styrene, the emulsifier of sodium dodecyl sulfate, the initiator of potassium persulfate. A few of key factors which can influence the thermal performance and the encapsulation, such as emulsifiers, initiators, temperature and reaction time were investigated. FTIR and DSC were employed to characterize the structure, the phase transition temperature and latent heat.


2007 ◽  
Vol 40 (4) ◽  
pp. 730-734 ◽  
Author(s):  
Il-Kyoung Jeong ◽  
N. Hur ◽  
Th. Proffen

Neutron powder diffraction studies on the structural evolution of hexagonal multiferroic YMnO3and YbMnO3from 1000 K to 1400 K, and from 1000 K to 1350 K, respectively, are presented. The temperature evolution of diffraction patterns suggests that YMnO3undergoes a phase transition to a non-polar structure above 1200 K, while YbMnO3remains ferroelectric up to 1350 K. Detailed structural parameters were obtained as a function of temperature from Rietveld refinements. Based on this result, the distinct differences in temperature behaviour between YMnO3and YbMnO3, and the origin of the ferroelectricity in these hexagonal multiferroics are discussed.


2000 ◽  
Vol 03 (03) ◽  
pp. 451-454 ◽  
Author(s):  
DAMIEN CHALLET ◽  
MATTEO MARSILI ◽  
RICCARDO ZECCHINA

We review recent exact analytical results on Minority Game — a binary exactly solvable El Farol's bar problem. Inductive agents minimize the available information, not their losses, thus the stationary state differs from a Nash equilibrium. On the other hand, the same learning dynamics leads to a Nash equilibrium when agents take into account their impact on the market.


2001 ◽  
Vol 33 (1) ◽  
pp. 260-280 ◽  
Author(s):  
Michel Mandjes ◽  
Jeong-Han Kim

2002 ◽  
Vol 34 (1) ◽  
pp. 58-84 ◽  
Author(s):  
Kavita Ramanan ◽  
Anirvan Sengupta ◽  
Ilze Ziedins ◽  
Partha Mitra

In this paper, we analyse a model of a regular tree loss network that supports two types of calls: unicast calls that require unit capacity on a single link, and multicast calls that require unit capacity on every link emanating from a node. We study the behaviour of the distribution of calls in the core of a large network that has uniform unicast and multicast arrival rates. At sufficiently high multicast call arrival rates the network exhibits a ‘phase transition’, leading to unfairness due to spatial variation in the multicast blocking probabilities. We study the dependence of the phase transition on unicast arrival rates, the coordination number of the network, and the parity of the capacity of edges in the network. Numerical results suggest that the nature of phase transitions is qualitatively different when there are odd and even capacities on the links. These phenomena are seen to persist even with the introduction of nonuniform arrival rates and multihop multicast calls into the network. Finally, we also show the inadequacy of approximations such as the Erlang fixed-point approximations when multicasting is present.


Sign in / Sign up

Export Citation Format

Share Document