Determination of the load - displacement curve of moment resisting steel frames under horizontal loading

2001 ◽  
Vol 27 (4) ◽  
pp. 341-351 ◽  
Author(s):  
S. M. Karakostas ◽  
E. S. Mistakidis
Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 12-27
Author(s):  
Alfredo Reyes-Salazar ◽  
Eden Bojorquez ◽  
Juan Bojorquez ◽  
Mario D. Llanes-Tizoc ◽  
J. Ramon Gaxiola-Camacho ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2312
Author(s):  
Xin Liang ◽  
Fang Yan ◽  
Yuliang Chen ◽  
Huiqin Wu ◽  
Peihuan Ye ◽  
...  

In order to study the mechanical properties of recycled aggregate concrete (RAC) at different ages, 264 standard cubes were designed to test its direct shear strength and cube compressive strength while considering the parameters of age and recycled aggregate replacement ratio. The failure pattern and load–displacement curve of specimens at direct shearing were obtained; the direct shear strength and residual shear strength were extracted from the load–displacement curves. Experimental results indicate that the influence of the replacement ratio for the front and side cracks of RAC is insignificant, with the former being straight and the latter relatively convoluted. At the age of three days, the damaged interface between aggregate and mortar is almost completely responsible for concrete failure; in addition to the damage of coarse aggregates, aggregate failure is also an important factor in concrete failure at other ages. The load–displacement curve of RAC at direct shearing can be divided into elasticity, elastoplasticity, plasticity, and stabilization stages. The brittleness of concrete decreases with its age, which is reflected in the gradual shortening of the elastoplastic stage. At 28 days of age, the peak direct shear force increases with the replacement ratio, while the trend is opposite at ages of 3 days, 7 days, and 14 days, respectively. The residual strength of RAC decreases inversely to the replacement ratio, with the rate of decline growing over time. A two-parameter RAC direct shear strength calculation formula was established based on the analysis of age and replacement rate to peak shear force of RAC. The relationship between cube compressive strength and direct shear strength of recycled concrete at various ages was investigated.


2020 ◽  
Vol 230 ◽  
pp. 107013
Author(s):  
Ying Zhen ◽  
Xuyang Li ◽  
Yuguang Cao ◽  
Shihua Zhang

1993 ◽  
Vol 119 (6) ◽  
pp. 1885-1902 ◽  
Author(s):  
Stephen P. Schneider ◽  
Charles W. Roeder ◽  
James E. Carpenter

2008 ◽  
Vol 392-394 ◽  
pp. 267-270
Author(s):  
Qiang Liu ◽  
Ying Xue Yao ◽  
L. Zhou

Nanoindentation device has the ability to make the load-displacement measurement with sub-nanometer indentation depth sensitivity, and the nanohardness of the material can be achieved by the load-displacement curve. Aiming at the influence law of indenter tip radius to indentation hardness, testing on the hardness of single-crystal silicon were carried out with the new self-designed nanohardness test device based on nanoindentation technique. Two kinds of Berkovich indenter with radius 40nm and 60nm separately were used in this experiment. According to the load-depth curve, the hardness of single-crystal silicon was achieved by Oliver-Pharr method. Experimental results are presented which show that indenter tip radius do influence the hardness, the hardness value increases and the indentation size effect (ISE) becomes obvious with the increasing of tip radius under same indentation depth.


2021 ◽  
Vol 11 (18) ◽  
pp. 8386
Author(s):  
Jin-Kook Kim ◽  
Jun-Mo Yang

This study aimed to evaluate the bearing strength of the post-tensioning anchorage zone with respect to the relative bearing area and lateral confinement design of spiral and stirrup rebars. Eleven specimens were fabricated and tested to fracture in accordance with EAD 160004-00-0301. Load-displacement curves and fracture modes were analyzed. Then, the conventional design equation for the bearing strength and previous findings on the relative bearing area was re-investigated in comparison with the test results. From the test, the representative findings are as follows: (1) A specimen with relatively small size and less lateral reinforcement is more likely to be affected by the wedge action of the anchorage device; however, a larger specimen is affected by both concrete crushing and/or spalling; (2) The behavior of the anchorage zone is markedly affected by the local behavior near the anchorage bearing plate, and the sectional efficiency is mostly determined by A/Ag; (3) For specimens with A/Ag = 9.52, the proportional limit of the load-displacement curve is determined by the yield of spiral rebar or fracture of the bearing plate, but the later part of the curve is determined by lateral confinement; (4) The maximum A/Ag that could produce 100% sectional efficiency is about 2.0 for the anchorage bearing plate used in the test; (5) For a fully confined specimen with a small-diameter spiral for minimum anchorage spacing, the stirrup rebar design mainly influences crack occurrence and patterns when the size of the specimen is equal to the minimum anchorage spacing; however, the area of the load-displacement curve after the proportional limit as well as crack occurrence and patterns are also influenced by stirrup rebar design when A/Ag is relatively large; (6) Finally, a revised design model is proposed to effectively estimate the ultimate bearing strength of the post-tensioning anchorage zone without respect to A/Ag. From the comparison of the design equations, it was concluded that the proposed equation provides a more reliable prediction with a 14.0% average error rate and 5.7% standard deviation of error rate.


Sign in / Sign up

Export Citation Format

Share Document