Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI—a case study in Southern Brazil

2011 ◽  
Vol 56 (3) ◽  
pp. 471-480 ◽  
Author(s):  
Peter Bröde ◽  
Eduardo L. Krüger ◽  
Francine A. Rossi ◽  
Dusan Fiala
2021 ◽  
Vol 13 (14) ◽  
pp. 7670
Author(s):  
Doris A. Chi ◽  
Edwin González M. ◽  
Renato Valdivia ◽  
Eduardo Gutiérrez J.

This work implements parametric tools to optimize the environmental design of urban adaptive shadings through multiobjective evolutionary algorithms that look for solutions of dynamic (time-changing) structures used in open public spaces. The proposal is located in Malecon Cancun Tajamar in the southeast part of Mexico, and the main objective is to enhance the thermal comfort of users as well as to become part of the social dynamics of the place reinforcing identity through appropriation. The proposed workflow includes four steps: (1) geometric modelling by parametric modelling tools; (2) simulation of environmental parameters by using BPS tools; (3) shape optimization by using an evolutionary algorithm; and (4) environmental verification of the results. The Universal Thermal Climate Index (UTCI) was used to assess the outdoor thermal comfort derived from the dynamic shadings. The results showed a significant improvement in the thermal comfort with absolute UTCI differences of 3.9, 7.4, and 3.1 °C at 8, 12, and 16 h, respectively, during the summer; and absolute differences of 1.4, 3.5, and 2 °C at 8, 12, and 16 h, respectively, during the winter. The proposed workflow can help to guide the early design process of dynamic shadings by finding optimal solutions that enhance outdoor thermal comfort.


Climate ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 72 ◽  
Author(s):  
Jonathan Graham ◽  
Umberto Berardi ◽  
Geoffrey Turnbull ◽  
Robert McKaye

In the context of global climate change, it is increasingly important for architects to understand the effects of their interventions on indoor and outdoor thermal comfort. New microclimate analysis tools which are gaining appreciation among architects enable the assessment of different design options in terms of biometeorological parameters, such as the Universal Thermal Climate Index (UTCI) and the Outdoor Thermal Comfort Autonomy. This paper reflects on some recent experiences of an architectural design office attempting to incorporate local climatic considerations as a design driver in projects. The investigation shows that most of the available tools for advanced climatic modelling have been developed for research purposes and are not optimized for architectural and urban design; consequently, they require adaptations and modifications to extend their functionality or to achieve interoperability with software commonly used by architects. For this scope, project-specific Python scripts used to extract design-consequential information from simulation results, as well as to construct meteorological boundary conditions for microclimate simulations, are presented. This study describes the obstacles encountered while implementing microclimate analysis in an architectural office and the measures taken to overcome them. Finally, the benefits of this form of analysis are discussed.


FLORESTA ◽  
2014 ◽  
Vol 44 (3) ◽  
pp. 515 ◽  
Author(s):  
Angeline Martini ◽  
Daniela Biondi ◽  
Antonio Carlos Batista ◽  
Kendra Zamproni ◽  
Jennifer Viezzer ◽  
...  

O objetivo deste artigo foi analisar a percepção da população com relação ao conforto térmico proporcionado pela arborização de ruas na cidade de Curitiba. Para isso foram realizadas entrevistas simultaneamente em uma rua arborizada e outra sem arborização, nas quatro estações do ano. Paralelamente, foram também coletados dados meteorológicos para calcular o índice de conforto térmico nesses ambientes. O índice utilizado foi o Universal Thermal Climate Index (UTCI) e o seu valor foi comparado com a resposta dada pelos entrevistados. A porcentagem de pessoas que declaram não estar sentindo nem frio e nem calor na rua arborizada foi menor do que na rua sem arborização, possivelmente devido ao maior número de entrevistados na primavera e outono, estações com características climáticas amenas. Dos entrevistados, 54,3% sentiam-se confortáveis termicamente nas ruas sem árvores, enquanto que na rua arborizada esse número foi 76,5%. A maioria dos entrevistados (98,3%) afirmou que arborização de ruas proporciona melhores condições de conforto térmico. O índice utilizado, UTCI, refletiu aproximadamente 60% da sensação de conforto expressa pelos entrevistados. Conclui-se que a população que transita pelas ruas da cidade de Curitiba consegue perceber a diferença entre as ruas arborizadas e não arborizadas por meio das sensações de conforto térmico.Palavras-chave: Arborização urbana; índice de conforto térmico; qualidade de vida; UTCI. AbstractPopulation’s perception on thermal comfort provided by street trees of Curitiba - PR. This research aims to analyze the population’s perception regarding thermal comfort provided by street trees in the city of Curitiba. Therefore, interviews were conducted simultaneously on streets with and without trees, during the four seasons. At the same time, meteorological data were collected to calculate the thermal comfort index for these environments. The Universal Thermal Climate Index (UTCI) was used and its value was compared to the answers given in the interviews. The amount of people who said they were not feeling neither cold nor heat on the streets with trees was lower than on the streets without trees, possibly due to a greater number of people who were interviewed during spring and fall, seasons with mild climatic characteristics. While 54.3% of the people felt comfortable in the streets without trees, 76.5% felt the same on streets with trees. Most interviewee (98.3%) said that street trees provide better thermal comfort. The UTCI revealed approximately 60% of the comfort sense expressed by the population. We concluded that the population who roam the streets of the city of Curitiba - PR can perceive the difference between streets with and without trees through the sensations of thermal comfort.Keywords: Urban forestry; thermal comfort index; quality of life; UTCI.


2021 ◽  
Vol 94 (2) ◽  
pp. 237-249
Author(s):  
Martin Novák

The article includes a summary of basic information about the Universal Thermal Climate Index (UTCI) calculation by the numerical weather prediction (NWP) model ALADIN of the Czech Hydrometeorological Institute (CHMI). Examples of operational outputs for weather forecasters in the CHMI are shown in the first part of this work. The second part includes results of a comparison of computed UTCI values by ALADIN for selected place with UTCI values computed from real measured meteorological data from the same place.


Author(s):  
V. V. Vinogradova

The paper uses the universal thermal climate index (UTCI) to estimate the bioclimate in Russia, initiated by the Commission of the International society of Biometeorology. The UTCI index can be described as equivalent environment temperature (°C), which provides the same physiological impact on humans as the actual environment. Assessment of bioclimatic conditions is shown for the territory of Russia in the period of modern climate change (2001–2015). Cold stress conditions (from low to extreme) were observed in the almost all territory of Russia for about 8–11 months a year. During the rest of the year, the conditions are neutral or comfortable. The period of extreme and very high cold stress is reduced during the modern climate warming (compared to the period 1961–1990), especially in the Arctic, in the European part of Russia, in Western and Eastern Siberia. At the same time, the period with neutral and comfortable thermal conditions increases.


2021 ◽  
Vol 94 (2) ◽  
pp. 167-182
Author(s):  
Katarzyna Lindner-Cendrowska ◽  
Peter Bröde

The objective of this study was to assess biothermal conditions in the selected Polish health resorts for specific forms of climatic therapy. We calculated Universal Thermal Climate Index (UTCI) for ten-year period (2008- 2017) and then added adjustment terms, taking into account changes in metabolic rates during various physical activities from resting to vigorous exercise. The adjusted UTCI values increased with rising activity, implying that warmer parts of the year were unsuitable for intensive forms of climatotherapy. These results demonstrate that the UTCI adjustment procedure provides well-balanced assessments of bioclimatic conditions for the purpose of climatic treatment considering the level of activity


2010 ◽  
Vol 14 (1) ◽  
pp. 103-109 ◽  
Author(s):  
Danuta Idzikowska

Abstract The aim of this study was to examine the main features of the bioclimatic conditions of three European cities using a new Universal Thermal Climate Index. Daily values of meteorological variables for 12 UTC for the cities for 1990-2001 were used in the study. Using the frequency of UTCI and one-way Anova, the results showed that in all the three cities “no thermal stress” dominated throughout the year. “Extreme” values of heat as well as “cold stress” were observed but in none of the cities “extreme cold stress” occurred. The values of UTCI differed for all the three cities in each studied year. The cities differed from each other in each month during the whole year with the exception of spring - March and April.


Sign in / Sign up

Export Citation Format

Share Document