Factors affecting summer maize yield under climate change in Shandong Province in the Huanghuaihai Region of China

2011 ◽  
Vol 56 (4) ◽  
pp. 621-629 ◽  
Author(s):  
Guoqing Chen ◽  
Hongjun Liu ◽  
Jiwang Zhang ◽  
Peng Liu ◽  
Shuting Dong
Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1291
Author(s):  
Shengbao Wei ◽  
Jing Liu ◽  
Tiantian Li ◽  
Xiaoying Wang ◽  
Anchun Peng ◽  
...  

The predicted increase in the frequency of extreme climatic events in the future may have a negative effect on cereal production, but our understanding of the historical trends of high-temperature events associated with climate change and their long-term impact on summer maize yield is limited. Based on an analysis of historical climate and summer maize yield data from 1980 to 2016 in the Huang-Huai-Hai (3H) region of China, we calculated two high-temperature event indices, namely, high-temperature hours (HTH) and high-temperature degrees (HTD, the sum of the differences between 35 °C and above), and then investigated the temporal trend of high-temperature events from maize heading to maturity and their impact on the yield of summer maize. Our results indicated that the air temperature showed a significant upward trend when heading into the maturity period of summer maize in the 3H region from 1980–2016 and that the increase was greater in the northern Huang-Huai-Hai (N3H) region than in the southern Huang-Huai-Hai (S3H) region. The intensity of high-temperature events when heading into the maturity period increased considerably from 1980 to 2016 in the 3H region, especially in the S3H region. The HTH and HTD increased by 1.30 h and 0.80 °C per decade in the S3H region, respectively. Moreover, a sensitivity analysis of panel data showed that the increases in HTH and HTD when heading into the maturity period had a consistent negative effect on yield in S3H and N3H regions; this effect was more obvious in the S3H region. In the S3H region, a 1 h increase in HTH was found to be associated with a 0.45–1.13% decrease in yield and a 1 °C increase in HTD could result in a yield loss of 1.34–4.29%. High-temperature events were detrimental to summer maize production, and the severity of this effect was projected to increase in the 3H region. In this study, we used two indices (HTH and HTD) to quantify the impact of high-temperature events on summer maize yield during the critical growth phase (heading to maturity) at a small timescale (hours and days). The results of this study can provide a reference for policymakers to use in the formulation of corresponding climate change adaptation strategies.


资源科学 ◽  
2019 ◽  
Vol 41 (10) ◽  
pp. 1935-1948
Author(s):  
Zhenfu WU ◽  
Yanfeng ZHAO ◽  
Daoquan CHENG ◽  
Jie CHEN ◽  

Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 371
Author(s):  
Kevin Pello ◽  
Cedric Okinda ◽  
Aijun Liu ◽  
Tim Njagi

The environmental effects of climate change have significantly decreased agricultural productivity. Agroforestry technologies have been applied as a solution to promote sustainable agricultural systems. This study evaluates the factors influencing the adoption of agroforestry technology in Kenya. A multistage sampling technique was employed to collect data from 239 households in West Pokot County, Kenya. A Probit model and K-means algorithm were used to analyze the factors affecting farmers’ agroforestry technology adoption decisions based on the sampled households’ socio-economic, demographic, and farm characteristics. The study found that the total yield for maize crop, farm size, extension frequency, off-farm income, access to training, access to credit, access to transport facilities, group membership, access to market, gender, distance to nearest trading center, and household education level had significant effects on the adoption of agroforestry technologies. The findings of this study are important in informing policy formulation and implementation that promotes agroforestry technologies adoption.


Author(s):  
Sadegh Abedi ◽  
Mehrnaz Moeenian

Abstract Sustainable economic growth and identifying factors affecting it are among the important issues which have always received attention from researchers of different countries. Accordingly, one of the factors affecting economic growth, which has received attention from researchers in the developed countries over recent years, is the issue of environmental technologies that enter the economic cycle of other countries after being patented through technology transfer. The current research investigated the role of the environment-related patents and the effects of the patented technological innovations compatible with climate change mitigation on the economic growth and development in the Middle East countries within a specific time period. The required data were gathered from the valid global databases, including Organization for Economic Co-operation and Development and World Bank and have been analyzed using multi-linear regression methods and econometric models with Eviews 10 software. The obtained results with 95% confidence level show that the environmental patents (β = 0.02) and environment management (β = 0.04) and technologies related to the climate change mitigation (β = 0.02) have a significant positive impact on the sustainable economic development and growth rate in the studied countries. Such a study helps innovators and policymakers in policy decisions related to sustainable development programs from the perspective of environmentally friendly technologies by demonstrating the role of patents in three important environmental areas, namely environmental management, water-related adaptation and climate change mitigation, as one of the factors influencing sustainable economic growth.


2018 ◽  
Vol 10 (12) ◽  
pp. 4712 ◽  
Author(s):  
Jinjia Wu ◽  
Jiansheng Qu ◽  
Hengji Li ◽  
Li Xu ◽  
Hongfen Zhang ◽  
...  

The theme of global sustainable development has changed from environmental management to climate governance, and relevant policies on climate governance urgently need to be implemented by the public. The public understanding of climate change has become the prerequisite and basis for implementing various climate change policies. In order to explore the affected factors of climate change perception among Chinese residents, this study was conducted across 31 provinces and regions of China through field household surveys and interviews. Combined with the residents’ perception of climate change with the possible affected factors, the related factors affecting Chinese residents’ perception of climate change were explored. The results show that the perceptive level of climate change of Chinese residents is related to the education level and the household size of residents. Improving public awareness of climate change risk in the context of climate change through multiple channels will also help to improve residents’ awareness of climate change. On the premise of improving the level of national education, improving education on climate change in school education and raising awareness of climate change risk among dependents will help to improve the level of Chinese residents’ awareness of climate change, which could be instrumental in promoting public participation in climate change mitigation and adaptation actions.


2010 ◽  
Vol 11 ◽  
pp. 59-69 ◽  
Author(s):  
Janak Lal Nayava ◽  
Dil Bahadur Gurung

The relation between climate and maize production in Nepal was studied for the period 1970/71-2007/08. Due to the topographical differences within north-south span of the country, Nepal has wide variety of climatic condition. About 70 to 90% of the rainfall occurs during summer monsoon (June to September) and the rest of the months are almost dry. Maize is cultivated from March to May depending on the rainfall distribution. Due to the availability of improved seeds, the maize yield has been steadily increasing after 1987/1988. The national area and yield of maize is estimated to be 870,166ha and 2159kg/ha respectively in 2007/08. The present rate of annual increase of temperature is 0.04°C in Nepal. Trends of temperature rise are not uniform throughout Nepal. An increase of annual temperature at Rampur during 1968-2008 was only 0.039°C. However, at Rampur during the maize growing seasons, March/April - May, the trend of annual maximum temperature had not been changed, but during the month of June and July, the trend of increase of maximum temperature was 0.03°C to 0.04°C /year.Key words: Climate-change; Global-warming; Hill; Mountain; Nepal; TaraiThe Journal of AGRICULTURE AND ENVIRONMENT Vol. 11, 2010Page: 59-69Uploaded Date: 15 September, 2010


2016 ◽  
Vol 155 (5) ◽  
pp. 703-724 ◽  
Author(s):  
A. MULUNEH ◽  
L. STROOSNIJDER ◽  
S. KEESSTRA ◽  
B. BIAZIN

SUMMARYStudies on climate impacts and related adaptation strategies are becoming increasingly important to counteract the negative impacts of climate change. In Ethiopia, climate change is likely to affect crop yields negatively and therefore food security. However, quantitative evidence is lacking about the ability of farm-level adaptation options to offset the negative impacts of climate change and to improve food security. The MarkSim Global Climate Model weather generator was used to generate projected daily rainfall and temperature data originally taken from the ECHAM5 general circulation model and ensemble mean of six models under high (A2) and low (B1) emission scenarios. The FAO AquaCrop model was validated and subsequently used to predict maize yields and explore three adaptation options: supplemental irrigation (SI), increasing plant density and changing sowing date. The maximum level of maize yield was obtained when the second level of supplemental irrigation (SI2), which is the application of irrigation water when the soil water depletion reached 75% of the total available water in the root zone, is combined with 30 000 plants/ha plant density. It was also found that SI has a marginal effect in good rainfall years but using 94–111 mm of SI can avoid total crop failure in drought years. Hence, SI is a promising option to bridge dry spells and improve food security in the Rift Valley dry lands of Ethiopia. Expected longer dry spells during the shorter rainy season (Belg) in the future are likely to further reduce maize yield. This predicted lower maize production is only partly compensated by the expected increase in CO2 concentration. However, shifting the sowing period of maize from the current Belg season (mostly April or May) to the first month of the longer rainy season (Kiremt) (June) can offset the predicted yield reduction. In general, the present study showed that climate change will occur and, without adaptation, will have negative effects. Use of SI and shifting sowing dates are viable options for adapting to the changes, stabilizing or increasing yield and therefore improving food security for the future.


Sign in / Sign up

Export Citation Format

Share Document