Multiplicative neuron model artificial neural network based on Gaussian activation function

2015 ◽  
Vol 27 (4) ◽  
pp. 927-935 ◽  
Author(s):  
Ozge Gundogdu ◽  
Erol Egrioglu ◽  
Cagdas Hakan Aladag ◽  
Ufuk Yolcu
Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4242
Author(s):  
Fausto Valencia ◽  
Hugo Arcos ◽  
Franklin Quilumba

The purpose of this research is the evaluation of artificial neural network models in the prediction of stresses in a 400 MVA power transformer winding conductor caused by the circulation of fault currents. The models were compared considering the training, validation, and test data errors’ behavior. Different combinations of hyperparameters were analyzed based on the variation of architectures, optimizers, and activation functions. The data for the process was created from finite element simulations performed in the FEMM software. The design of the Artificial Neural Network was performed using the Keras framework. As a result, a model with one hidden layer was the best suited architecture for the problem at hand, with the optimizer Adam and the activation function ReLU. The final Artificial Neural Network model predictions were compared with the Finite Element Method results, showing good agreement but with a much shorter solution time.


Author(s):  
Natasha Munirah Mohd Fahmi ◽  
◽  
Nor Aira Zambri ◽  
Norhafiz Salim ◽  
Sim Sy Yi ◽  
...  

This paper presents a step-by-step procedure for the simulation of photovoltaic modules with numerical values, using MALTAB/Simulink software. The proposed model is developed based on the mathematical model of PV module, which based on PV solar cell employing one-diode equivalent circuit. The output current and power characteristics curves highly depend on some climatic factors such as radiation and temperature, are obtained by simulation of the selected module. The collected data are used in developing Artificial Neural Network (ANN) model. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) are the techniques used to forecast the outputs of the PV. Various types of activation function will be applied such as Linear, Logistic Sigmoid, Hyperbolic Tangent Sigmoid and Gaussian. The simulation results show that the Logistic Sigmoid is the best technique which produce minimal root mean square error for the system.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032069
Author(s):  
A Zueva ◽  
V Shamova ◽  
T Pilipenko

Abstract This article discusses the possibility of improving hydrological forecasting methods based on a neural network. The hydrological series, its importance and forecasting features are considered. For hydrological forecasting using the MapInfoProfessional geoinformation system, an electronic map has been developed containing information about the rivers of Russia, as well as gauging stations on the Ob River. The electronic map is the basis for creating a module for short-term hydrological forecasting based on an artificial neural network. The features of a neural network, methods of its training and implementation are considered. The developed artificial neural network is a layer of neurons with a linear activation function and a delay line at the input. To predict the levels of hydrological series, real water levels at gauging stations of the Ob River in the Novosibirsk region will be used. The developed module and its capabilities have been tested. The study was carried out on the basis of models of hydrological series, as well as on the basis of levels of real hydrological series. Based on the study, dependence of the root-mean-square error on the number of previous values of series was revealed. The study also shows that it is possible to use a neural network for the current one-step forecasting of levels of hydrological series in conditions of insufficient information about the runoff region and its characteristics.


Author(s):  
Edy Fradinata ◽  
Sakesun Suthummanon ◽  
Wannarat Suntiamorntut

This paper presents architecture of backpropagation Artificial Neural Network (ANN) and Support Vector Regression (SVR) models in supervised learning process for cement demand dataset. This study aims to identify the effectiveness of each parameter of mean square error (MSE) indicators for time series dataset. The study varies different random sample in each demand parameter in the network of ANN and support vector function as well. The variations of percent datasets from activation function, learning rate of sigmoid and purelin, hidden layer, neurons, and training function should be applied for ANN. Furthermore, SVR is varied in kernel function, lost function and insensitivity to obtain the best result from its simulation. The best results of this study for ANN activation function is Sigmoid. The amount of data input is 100% or 96 of data, 150 learning rates, one hidden layer, trinlm training function, 15 neurons and 3 total layers. The best results for SVR are six variables that run in optimal condition, kernel function is linear, loss function is ౬-insensitive, and insensitivity was 1. The better results for both methods are six variables. The contribution of this study is to obtain the optimal parameters for specific variables of ANN and SVR.


2021 ◽  
Author(s):  
Seifallah Fetni ◽  
Quy Duc Thinh Pham ◽  
Van Xuan Tran ◽  
Laurent Duchêne ◽  
Hoang Son Tran ◽  
...  

In the last decade, machine learning is increasingly attracting researchers in several scientific areas and, in particular, in the additive manufacturing field. Meanwhile, this technique remains as a black box technique for many researchers. Indeed, it allows obtaining novel insights to overcome the limitation of classical methods, such as the finite element method, and to take into account multi-physical complex phenomena occurring during the manufacturing process. This work presents a comprehensive study for implementing a machine learning technique (artificial neural network) to predict the thermal field evolution during the direct energy deposition of 316L stainless steel and tungsten carbides. The framework consists of a finite element thermal model and a neural network. The influence of the number of hidden layers and the number of nodes in each layer was also investigated. The results showed that an architecture based on 3 or 4 hidden layers and the rectified linear unit as the activation function lead to obtaining a high fidelity prediction with an accuracy exceeding 99%. The impact of the chosen architecture on the model accuracy and CPU usage was also highlighted. The proposed framework can be used to predict the thermal field when simulating multi-layer deposition.


Author(s):  
Anjar Wanto ◽  
Agus Perdana Windarto ◽  
Dedy Hartama ◽  
Iin Parlina

Artificial Neural Network (ANN) is often used to solve forecasting cases. As in this study. The artificial neural network used is with backpropagation algorithm. The study focused on cases concerning overcrowding forecasting based District in Simalungun in Indonesia in 2010-2015. The data source comes from the Central Bureau of Statistics of Simalungun Regency. The population density forecasting its future will be processed using backpropagation algorithm focused on binary sigmoid function (logsig) and a linear function of identity (purelin) with 5 network architecture model used the 3-5-1, 3-10-1, 3-5 -10-1, 3-5-15-1 and 3-10-15-1. Results from 5 to architectural models using Neural Networks Backpropagation with binary sigmoid function and identity functions vary greatly, but the best is 3-5-1 models with an accuracy of 94%, MSE, and the epoch 0.0025448 6843 iterations. Thus, the use of binary sigmoid activation function (logsig) and the identity function (purelin) on Backpropagation Neural Networks for forecasting the population density is very good, as evidenced by the high accuracy results achieved.


2020 ◽  
Vol 58 (1) ◽  
pp. 25-38
Author(s):  
Sandi Baressi Šegota ◽  
Daniel Štifanić ◽  
Kazuhiro Ohkura ◽  
Zlatan Car

An artificial neural network (ANN) approach is proposed to the problem of estimating the propeller torques of a frigate using combined diesel, electric and gas (CODLAG) propulsion system. The authors use a multilayer perceptron (MLP) feed-forward ANN trained with data from a dataset which describes the decay state coefficients as outputs and system parameters as inputs – with a goal of determining the propeller torques, removing the decay state coefficients and using the torque values of the starboard and port propellers as outputs. A total of 53760 ANNs are trained – 26880 for each of the propellers, with a total 8960 parameter combinations. The results are evaluated using mean absolute error (MAE) and coefficient of determination (R2). Best results for the starboard propeller are MAE of 2.68 [Nm], and MAE of 2.58 [Nm] for the port propeller with following ANN configurations respectively: 2 hidden layers with 32 neurons and identity activation and 3 hidden layers with 16, 32 and 16 neurons and identity activation function. Both configurations achieve R2 value higher than 0.99.


Sign in / Sign up

Export Citation Format

Share Document