scholarly journals Petrogenesis of a late-stage calc-alkaline granite in a giant S-type batholith: geochronology and Sr–Nd–Pb isotopes from the Nomatsaus granite (Donkerhoek batholith), Namibia

Author(s):  
S. Aspiotis ◽  
S. Jung ◽  
F. Hauff ◽  
R. L. Romer

AbstractThe late-tectonic 511.4 ± 0.6 Ma-old Nomatsaus intrusion (Donkerhoek batholith, Damara orogen, Namibia) consists of moderately peraluminous, magnesian, calc-alkalic to calcic granites similar to I-type granites worldwide. Major and trace-element variations and LREE and HREE concentrations in evolved rocks imply that the fractionated mineral assemblage includes biotite, Fe–Ti oxides, zircon, plagioclase and monazite. Increasing K2O abundance with increasing SiO2 suggests accumulation of K-feldspar; compatible with a small positive Eu anomaly in the most evolved rocks. In comparison with experimental data, the Nomatsaus granite was likely generated from meta-igneous sources of possibly dacitic composition that melted under water-undersaturated conditions (X H2O: 0.25–0.50) and at temperatures between 800 and 850 °C, compatible with the zircon and monazite saturation temperatures of 812 and 852 °C, respectively. The Nomatsaus granite has moderately radiogenic initial 87Sr/86Sr ratios (0.7067–0.7082), relatively radiogenic initial εNd values (− 2.9 to − 4.8) and moderately evolved Pb isotope ratios. Although initial Sr and Nd isotopic compositions of the granite do not vary with SiO2 or MgO contents, fSm/Nd and initial εNd values are negatively correlated indicating limited assimilation of crustal components during monazite-dominated fractional crystallization. The preferred petrogenetic model for the generation of the Nomatsaus granite involves a continent–continent collisional setting with stacking of crustal slices that in combination with high radioactive heat production rates heated the thickened crust, leading to the medium-P/high-T environment characteristic of the southern Central Zone of the Damara orogen. Such a setting promoted partial melting of metasedimentary sources during the initial stages of crustal heating, followed by the partial melting of meta-igneous rocks at mid-crustal levels at higher P–T conditions and relatively late in the orogenic evolution.

2021 ◽  
Author(s):  
Long Zhang ◽  
Zhenyu Chen ◽  
Fangyue Wang ◽  
Noel C. White ◽  
Taofa Zhou

Abstract Uraninite is the main contributor to the bulk-rock uranium concentration in many U-rich granites and is the most important uranium source for granite-related uranium deposits. However, detailed textural and compositional evolution of magmatic uraninite in granites during alteration and associated uranium mobilization have not been well documented. In this study, textures and geochemistry of uraninites from the Zhuguangshan batholith (South China) were investigated by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The geochemical data indicate that the Longhuashan and Youdong plutons are peraluminous leucogranite, the Changjiang pluton is highly fractionated high-K calc-alkaline granite, and the Jiufeng pluton belongs to a high-K calc-alkaline association. Uraninites from the Longhuashan and Youdong granites have lower concentrations of ThO2 (0.9–4.0 wt %) and rare earth elements (REE)2O3 (0.1–1.0 wt %) than those from the Changjiang and Jiufeng granites (ThO2 = 4.4–7.6 wt %, REE2O3 = 0.7–5.1 wt %). Uraninites observed in the Longhuashan, Youdong, Changjiang, and Jiufeng granites yielded chemical ages of 223 ± 3, 222 ± 2, 157 ± 1, and 161 ± 2 Ma, respectively. The samples (including altered and unaltered) collected from the Longhuashan, Youdong, and Changjiang granites are characterized by highly variable whole-rock U concentrations of 6.9 to 44.7 ppm and Th/U ratios of 0.9 to 7.0, consistent with crystallization of uraninite in these granites being followed by uranium leaching during alteration. Alteration of uraninite, indicated by altered domains developing microcracks and appearing darker in backscattered electron (BSE) images compared to unaltered domains, results in the incorporation of Si and Ca and mobilization of U. In contrast, the least altered samples of the unmineralized Jiufeng granite have low U concentrations (5.3–16.4 ppm) and high ΣREE/U (13.6–49.4) and Th/U ratios (2.1–5.6), which inhibit crystallization of uraninite, as its crystallization occurs when the U concentration is high enough to exceed the substitution capacity of other U-bearing minerals. These results indicate that the Longhuashan, Youdong, and Changjiang granites were favorable uranium sources for the formation of uranium deposits in this area. This study highlights the potential of uraninite alteration and geochemistry to assist in deciphering uranium sources and enrichment processes of granite-related uranium deposits.


1976 ◽  
Vol 13 (2) ◽  
pp. 389-399 ◽  
Author(s):  
R. A. Frith ◽  
K. L. Currie

An ancient tonalitic complex becomes migmatitic around the Lac St. Jean massif, ultimately losing its identity in the high grade metamorphic rocks surrounding the anorthosite. Field relations suggest extreme metamorphism and anatexis of tonalitic rocks. Experimental data show that extensive partial melting of the tonalite leaves an anorthositic residue. The same process operating on more potassic rocks would leave monzonitic or quartz syenitic residues. Synthesis of experimental data suggests that the process could operate at pressures of 5–8 kbar and temperatures of 800–1000 °C, which are compatible with mineral assemblages around the anorthosite massif. Slightly higher temperatures at the end of the process could generate magmatic anorthosite.Application of the model to the Grenville province as a whole predicts generation of anorthosite during a long-lived thermal event of unusual intensity. Residual anorthosite would occur as a substratum in the crust, overlain by high-grade metamorphic rocks intruded by anorthosite and syenitic rocks, while higher levels in the crust would display abundant calc-alkaline plutons and extrusives.


Minerals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 76
Author(s):  
Shengyun Wang ◽  
Honghai Fan ◽  
Jinyong Chen ◽  
Donghuan Chen

The Gaudeanmus area is located at the southern Central Zone of the Damara orogenic belt in south-western Africa. In this paper, we investigate the whole rock major and trace element compositions and Sr–Nd–Pb isotopic compositions of the biotite granite, and determine the age of the samples utilising U–Pb zircon dating methods. Our results provide an LA–collector inductively plasma mass spectrometer (ICP–MS) zircon U–Pb age for the biotite granite of 540 ± 4 Ma (i.e., earliest Cambrian). The biotite granites show the characteristics of metaluminous compositions belonging to high-K calc–alkaline to shoshonite series. The granites contain high alkali and rare earth elements (REE), are enriched in large-ion lithophile elements (Rb, K, Pb), and depleted in high field-strength elements (Nb, Ta, Ti). The REE patterns are characterised by enrichment of LREEs relative to HREEs and medium negative Eu anomalies in the chondrite-normalised REE diagram. These rocks have high initial 87Sr/86Sr ratios (0.71400–0.71768); low εNd(t) value (−12.0 to −7.1); Sm–Nd isotope crust model ages ranging from 1711 to 2235 Ma; and large variations in 206Pb/204Pb (18.0851–19.2757), 207Pb/204Pb (15.6258–15.7269), and 208Pb/204Pb ratios (38.7437–40.5607). Such geochemical signatures indicate that the biotite granite rocks derive mainly from partial melting of ancient crustal rocks resembling the local basement meta-sedimentary rocks. However, minor mantle-derived materials may have also been involved in the formation of these rocks. Combining with regional tectonic evolution, we consider that the biotite granite intrusions in the Gaudeanmus area formed in a transitional tectonic regime that went from compressional to extensional tectonics.


Author(s):  
Shuanliang Zhang ◽  
Huayong Chen ◽  
Pete Hollings ◽  
Liandang Zhao ◽  
Lin Gong

The Aqishan-Yamansu belt in the Chinese Eastern Tianshan represents a Paleozoic arc-related basin generally accompanied by accretionary magmatism and Fe-Cu mineralization. To characterize the tectonic evolution of such an arc-related basin and related magmatism and metallogenesis, we present a systematic study of the geochronology, whole-rock geochemistry, and Sr-Nd isotopes of igneous rocks from the belt. New zircon U-Pb ages, in combination with published data, reveal three phases of igneous activity in the Aqishan-Yamansu belt: early Carboniferous felsic igneous rocks (ca. 350−330 Ma), late Carboniferous intermediate to felsic igneous rocks (ca. 320−305 Ma), and Permian quartz diorite and diorite porphyry dikes (ca. 280−265 Ma). The early Carboniferous felsic rocks are enriched in large ion lithophile elements (LILEs) and depleted in Nb, Ta, and Ti, showing arc-related magma affinities. Their positive εNd(t) values (3.3−5.9) and corresponding depleted mantle model ages (TDM) of 0.83−0.61 Ga, as well as high MgO contents, Mg# values, and Nb/Ta ratios, suggest that they were derived from lower crust with involvement of mantle-derived magmas. The late Carboniferous intermediate igneous rocks show calc-alkaline affinities, exhibiting LILE enrichment and high field strength element (HFSE) depletion, with negative Nb and Ta anomalies. They have high MgO contents and Mg# values with positive εNd(t) values (3.9−7.9), and high Ba/La and Th/Yb ratios, implying a depleted mantle source metasomatized by slab-derived fluids and sediment or sediment-derived melts. The late Carboniferous felsic igneous rocks are metaluminous to peraluminous with characteristics of medium-K calc-alkaline I-type granites. Given the positive εNd(t) values (6.3−6.6) and TDM ages (0.56−0.53 Ga), we suggest the late Carboniferous felsic igneous rocks were produced by partial melting of a juvenile lower crust. The Permian dikes show characteristics of adakite rocks. They have relatively high MgO contents and Mg# values, and positive εNd(t) values (7.2−8.5), which suggest an origin from partial melting of a residual basaltic oceanic crust. We propose that the Aqishan-Yamansu belt was an extensional arc−related basin from ca. 350 to 330 Ma; this was followed by a relatively stable carbonate formation stage at ca. 330−320 Ma, when the Kangguer oceanic slab subducted beneath the Central Tianshan block. As the subduction continued, the Aqishan-Yamansu basin closed due to slab breakoff and rebound during ca. 320−305 Ma, which resulted in basin inversion and the emplacement of granitoids with contemporary Fe-Cu mineralization. During the Permian, the Aqishan-Yamansu belt was in postcollision extension stage, with Permian adakitic dikes formed by partial melting of a residual oceanic crust.


1982 ◽  
Vol 46 (339) ◽  
pp. 201-210 ◽  
Author(s):  
Agnete Steenfelt

AbstractThe Caledonian fold belt of East Greenland contains calc-alkaline granite (sensu lato) intrusions with ages ranging from c.2000 Ma to c.350 Ma. The Proterozoic granites have low U contents and the pre-Devonian Caledonian granites contents of U corresponding to the clarke value for U in granites. Some aspects of the geochemistry of U are discussed using U-K/Rb, U-Sr, U-Zr, and U-Th diagrams. Secondary enrichment and mineralization occurs in fractured and hydrothermally altered granites and rhyolites situated in or near a major NNE fault zone. The U is associated with iron oxides or hydrocarbons. It is suggested that the source of the mineralization was Devonian acid magma, which also acted as a heat source for circulating hydrothermal fluids.


Sign in / Sign up

Export Citation Format

Share Document