scholarly journals A theoretical interpretation of ion composition measured on board the 'Active' satellite in the European sector during April 10−12, 1990 geomagnetic storm

1995 ◽  
Vol 13 (6) ◽  
pp. 608-616 ◽  
Author(s):  
M. Förster ◽  
V. Mikhailov ◽  
A. Mikhailov ◽  
J. Smilauer

Abstract. Ion composition measurements on board the ACTIVE satellite during the recovery phase of a strong geomagnetic storm of 10-12 April 1990 revealed extremely high concentrations (up to 103 cm-3) of the NO+, O+2, N+2 molecular ions in the topside F2-region of the European high-latitude zone. Concentrations of O+, N+, He+, H+ light ions were slightly decreased relative to prestorm quite conditions. Theoretical calculations were used to analyze the observed variations in ion concentration. Increased neutral temperature and [O2], [N2] are shown to be the main reasons for the observed ion concentration variations.

2017 ◽  
Vol 122 (12) ◽  
pp. 12,517-12,533 ◽  
Author(s):  
J. Moro ◽  
L. C. A. Resende ◽  
C. M. Denardini ◽  
J. Xu ◽  
I. S. Batista ◽  
...  

2009 ◽  
Vol 27 (2) ◽  
pp. 321-326 ◽  
Author(s):  
K.I. Popov ◽  
V.Yu. Bychenkov ◽  
W. Rozmus ◽  
V.F. Kovalev ◽  
R.D. Sydora

AbstractKinetic collisionless expansion of a spherical cluster composed of light and heavy cold ions and hot electrons is studied for arbitrary electron temperature. A wide set of regimes of plasma expansion, from nearly quasi-neutral to Coulomb explosion, is described from a unified description. The time evolution of the velocity, density, and energy spectra for accelerated ions is studied. The study demonstrates that an optimum light ion concentration from few percent to few tens percent, depending on the electron temperature, leads to a quasi-monoenergetic spectra with numbers as high as 70–80% of the total number of light ions.


2021 ◽  
Vol 13 (5) ◽  
pp. 1010
Author(s):  
Lehui Wei ◽  
Chunhua Jiang ◽  
Yaogai Hu ◽  
Ercha Aa ◽  
Wengeng Huang ◽  
...  

This study presents observations of nighttime spread F/ionospheric irregularities and spread Es at low and middle latitudes in the South East Asia longitude of China sectors during the recovery phase of the 7–9 September 2017 geomagnetic storm. In this study, multiple observations, including a chain of three ionosondes located about the longitude of 100°E, Swarm satellites, and Global Navigation Satellite System (GNSS) ROTI maps, were used to study the development process and evolution characteristics of the nighttime spread F/ionospheric irregularities at low and middle latitudes. Interestingly, spread F and intense spread Es were simultaneously observed by three ionosondes during the recovery phase. Moreover, associated ionospheric irregularities could be observed by Swarm satellites and ground-based GNSS ionospheric TEC. Nighttime spread F and spread Es at low and middle latitudes might be due to multiple off-vertical reflection echoes from the large-scale tilts in the bottom ionosphere. In addition, we found that the periods of the disturbance ionosphere are ~1 h at ZHY station, ~1.5 h at LSH station and ~1 h at PUR station, respectively. It suggested that the large-scale tilts in the bottom ionosphere might be produced by LSTIDs (Large scale Traveling Ionospheric Disturbances), which might be induced by the high-latitude energy inputs during the recovery phase of this storm. Furthermore, the associated ionospheric irregularities observed by satellites and ground-based GNSS receivers might be caused by the local electric field induced by LSTIDs.


1996 ◽  
Vol 14 (2) ◽  
pp. 191-200 ◽  
Author(s):  
P.-Y. Diloy ◽  
A. Robineau ◽  
J. Lilensten ◽  
P.-L. Blelly ◽  
J. Fontanari

Abstract. It has been previously demonstrated that a two-ion (O+ and H+) 8-moment time-dependent fluid model was able to reproduce correctly the ionospheric structure in the altitude range probed by the EISCAT-VHF radar. In the present study, the model is extended down to the E-region where molecular ion chemistry (NO+ and O+2, essentially) prevails over transport; EISCAT-UHF observations confirmed previous theoretical predictions that during events of intense E×B induced convection drifts, molecular ions (mainly NO+) predominate over O+ ions up to altitudes of 300 km. In addition to this extension of the model down to the E-region, the ionization and heating resulting from both solar insolation and particle precipitation is now taken into account in a consistent manner through a complete kinetic transport code. The effects of E×B induced convection drifts on the E- and F-region are presented: the balance between O+ and NO+ ions is drastically affected; the electric field acts to deplete the O+ ion concentration. The [NO+]/[O+] transition altitude varies from 190 km to 320 km as the perpendicular electric field increases from 0 to 100 mV m-1. An interesting additional by-product of the model is that it also predicts the presence of a noticeable fraction of N+ ions in the topside ionosphere in good agreement with Retarding Ion Mass Spectrometer measurements onboard Dynamic Explorer.


1958 ◽  
Vol 36 (3) ◽  
pp. 347-362 ◽  
Author(s):  
E. Riklis ◽  
J. H. Quastel

The rate of absorption of glucose from isolated surviving guinea pig intestine increases with increase of the concentration of glucose in the lumen until a maximum rate is obtained. The relation between absorption rate of glucose and initial glucose concentration conforms to an equation of the Michaelis–Menten type. The apparent Km(half saturation concentration) is 7 × 10−3M. Increase of the concentration of potassium ions in the Ringer–bicarbonate solution bathing the intestine leads to an increase of the rate of glucose absorption, this being most marked with 15.6 meq./liter K+and 14 mM glucose. No such stimulating action of potassium ions is observed on glucose absorption under anaerobic conditions. The effect of increased potassium ion concentration is to accelerate the rate of transport found with low concentrations of glucose to the maximum value found with high concentrations of the sugar. Sodium ions must be present for glucose absorption to take place and omission of magnesium ions from a Ringer–bicarbonate solution, containing 15.6 meq./liter K+, brings about a decreased rate of active glucose transport. Magnesium ions are necessary for the stimulated rate of glucose absorption obtained in the presence of potassium ions. The presence of ammonium ions decreases the rate of glucose absorption. Potassium ions may be effectively replaced by rubidium ions for stimulation of glucose transport. Cesium ions do not activate. The proportion of glucose to fructose appearing in the serosal solution, when fructose is absorbed from the mucosal solution, depends on the concentration of fructose present. The proportion may be as high as 9:1 with low (7 mM) fructose concentrations; it decreases with increasing fructose concentrations. The active transport of fructose, as demonstrated by the conversion of fructose in the isolated surviving guinea pig intestine, is enhanced by the presence of potassium ions (15.6 meq./liter). The rate of transport of fructose itself is unaffected by potassium. Using radioactive glucose and fructose, it is shown that the total amount of sugar transferred through the intestine as estimated by the radioactivity appearing in the serosal solution is approximately that calculated from chemical analyses. Potassium ions have no activating action on the transport of sugars such as sorbose, mannose, and D-glucosamine, but have a marked effect on galactose transport. The results support the conclusion that potassium ions do not influence active transport of glucose, fructose, and galactose by a change of intestinal permeability to these sugars, but do so by affecting a specific phase involved in the mechanism of active transport of sugars. The presence of L-glutamine stimulates active transport of glucose, whereas that of L-glutamate tends to diminish it.


2002 ◽  
Vol 20 (4) ◽  
pp. 461-470 ◽  
Author(s):  
M. H. Denton ◽  
G. J. Bailey ◽  
C. R. Wilford ◽  
A. S. Rodger ◽  
S. Venkatraman

Abstract. Observations made by the DMSP F10 satellite during the recovery phase from geomagnetic disturbances in June 1991 show regions of He+ dominance around 830 km altitude at 09:00 MLT. These regions are co-located with a trough in ionisation observed around 55° in the winter hemisphere. Plasma temperature and concentration observations made during the severe geomagnetic storm of 24 March 1991 are used as a case study to determine the effects of geomagnetic disturbances along the orbit of the F10 satellite. Previous explanations for He+ dominance in this trough region relate to the part of the respective flux tubes that is in darkness. Such conditions are not relevant for this study, since the whole of the respective flux tubes are sunlit. A new mechanism is proposed to explain the He+ dominance in the trough region. This mechanism is based on plasma transport and chemical reaction effects in the F-region and topside ionosphere, and on the time scales for such chemical reactions. Flux tubes previously depleted by geomagnetic storm effects refill during the recovery phase from the ionosphere as a result of pressure differences along the flux tubes. Following a geomagnetic disturbance, the He+ ion recovers quickly via the rapid photoionisation of neutral helium, in the F-region and the topside. The recovery of the O+ and H+ ions is less rapid. This is proposed as a result of the respective charge exchange reactions with neutral atomic hydrogen and oxygen. Preliminary model calculations support the proposed mechanism.Key words. Magnetospheric physics (storms and sub-storms, plasmasphere)


1980 ◽  
Vol 43 (331) ◽  
pp. 901-904 ◽  
Author(s):  
D. Alun Humphreys ◽  
John H. Thomas ◽  
Peter A. Williams ◽  
Robert F. Symes

SummaryThe chemical stabilities of mendipite, Pb3O2Cl2, diaboleïte, Pb2CuCl2(OH)4, chloroxiphite, Pb3CuCl2O2(OH)2, and cumengéite, Pb19Cu24Cl42 (OH)44, have been determined in aqueous solution at 298.2 K. Values of standard Gibbs free energy of formation, ΔGf°, for the four minerals are −740, −1160, −1129, and −15163±20 kJ mol−1 respectively. These values have been used to construct the stability diagram shown in fig. I which illustrates their relationships to each other and to the minerals cotunnite, PbCl2, paralaurionite, PbOHCl, and litharge, PbO. This diagram shows that mendipite occupies a large stability field and should readily form from cold, aqueous, mineralizing solutions containing variable amounts of lead and chloride ions, and over a broad pH range. The formation of paralaurionite and of cotunnite requires a considerable increase in chloride ion concentration, although paralaurionite can crystallize under much less extreme conditions than cotunnite. The encroachment of the copper minerals on to the stability fields of those mineral phases containing lead(II) only is significant even at very low relative activities of cupric ion. Chloroxiphite has a large stability field, and at given concentrations of cupric ion, diaboleïte is stable at relatively high aCl−. Cumengéite will only form at high concentrations of chloride ion.


1955 ◽  
Vol 33 (1) ◽  
pp. 687-694 ◽  
Author(s):  
D. W. Clarke

The amounts of glucose taken from a medium, and the amounts of glycogen synthesized, by rat hemidiaphragms were studied under various conditions. High concentrations of potassium ion inhibited the glucose uptake and there was also a reduced net glycogen synthesis. Glycogen breakdown was probably not increased by high potassium ion concentration. The effect of potassium was most marked when conditions were such that one would ordinarily expect a considerable glucose uptake or glycogen synthesis. The action of insulin was not peculiarly susceptible to potassium ion inhibition.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Malek Jalilian ◽  
Peyman Pourafshary ◽  
Behnam Sedaee Sola ◽  
Mosayyeb Kamari

Designing smart water (SW) by optimizing the chemical composition of injected brine is a promising low-cost technique that has been developed for both sandstone and carbonate reservoirs for several decades. In this study, the impact of SW flooding during tertiary oil recovery phase was investigated by core flooding analysis of pure limestone carbonate rocks. Increasing the sulfate ion concentration by using CaSO4 and MgSO4 of NaCl concentration and finally reducing the total salinity were the main manipulations performed to optimize SW. The main objective of this research is to compare active cations including Ca2+ and Mg2+ in the presence of sulfate ions (SO42−) with regard to their efficiency in the enhancement of oil production during SW flooding of carbonate cores. The results revealed a 14.5% increase in the recovery factor by CaSO4 proving its greater effectiveness compared to MgSO4, which led to an 11.5% production enhancement. It was also realized that low-salinity water flooding (LSWF) did not lead to a significant positive effect as it contributed less than 2% in the tertiary stage.


Sign in / Sign up

Export Citation Format

Share Document