scholarly journals A new method to reconstruct the ionospheric convection patterns in the polar cap

1999 ◽  
Vol 17 (6) ◽  
pp. 743-748
Author(s):  
P. L. Israelevich ◽  
A. I. Ershkovich

Abstract. A new method to reconstruct the instantaneous convection pattern in the Earth's polar ionosphere is suggested. Plasma convection in the polar cap ionosphere is described as a hydrodynamic incompressible flow. This description is valid in the region where the electric currents are field aligned (and hence, the Lorentz body force vanishes). The problem becomes two-dimensional, and may be described by means of stream function. The flow pattern may be found as a solution of the boundary value problem for stream function. Boundary conditions should be provided by measurements of the electric field or plasma velocity vectors along the satellite orbits. It is shown that the convection pattern may be reconstructed with a reasonable accuracy by means of this method, by using only the minimum number of satellite crossings of the polar cap. The method enables us to obtain a reasonable estimate of the convection pattern without knowledge of the ionospheric conductivity.Key words. Ionosphere (modelling and forecasting; plasma convection; polar ionosphere)

2000 ◽  
Vol 18 (4) ◽  
pp. 454-460
Author(s):  
P.L. Israelevich ◽  
V. O. Papitashvili ◽  
A. I. Ershkovich

Abstract. In this study we test a stream function method suggested by Israelevich and Ershkovich for instantaneous reconstruction of global, high-latitude ionospheric convection patterns from a limited set of experimental observations, namely, from the electric field or ion drift velocity vector measurements taken along two polar satellite orbits only. These two satellite passes subdivide the polar cap into several adjacent areas. Measured electric fields or ion drifts can be considered as boundary conditions (together with the zero electric potential condition at the low-latitude boundary) for those areas, and the entire ionospheric convection pattern can be reconstructed as a solution of the boundary value problem for the stream function without any preliminary information on ionospheric conductivities. In order to validate the stream function method, we utilized the IZMIRAN electrodynamic model (IZMEM) recently calibrated by the DMSP ionospheric electrostatic potential observations. For the sake of simplicity, we took the modeled electric fields along the noon-midnight and dawn-dusk meridians as the boundary conditions. Then, the solution(s) of the boundary value problem (i.e., a reconstructed potential distribution over the entire polar region) is compared with the original IZMEM/DMSP electric potential distribution(s), as well as with the various cross cuts of the polar cap. It is found that reconstructed convection patterns are in good agreement with the original modelled patterns in both the northern and southern polar caps. The analysis is carried out for the winter and summer conditions, as well as for a number of configurations of the interplanetary magnetic field.Key words: Ionosphere (electric fields and currents; plasma convection; modelling and forecasting)


2009 ◽  
Vol 27 (10) ◽  
pp. 3923-3932 ◽  
Author(s):  
A. G. Wood ◽  
S. E. Pryse ◽  
J. Moen

Abstract. Results are presented from a multi-instrument study showing the influence of geomagnetic substorm activity on the spatial distribution of the high-latitude ionospheric plasma. Incoherent scatter radar and radio tomography measurements on 12 December 2001 were used to directly observe the remnants of polar patches in the nightside ionosphere and to investigate their characteristics. The patches occurred under conditions of IMF Bz negative and IMF By negative. They were attributed to dayside photoionisation transported by the high-latitude convection pattern across the polar cap and into the nighttime European sector. The patches on the nightside were separated by some 5° latitude during substorm expansion, but this was reduced to some 2° when the activity had subsided. The different patch separations resulted from the expansion and contraction of the high-latitude plasma convection pattern on the nightside in response to the substorm activity. The patches of larger separation occurred in the antisunward cross-polar flow as it entered the nightside sector. Those of smaller separation were also in antisunward flow, but close to the equatorward edge of the convection pattern, in the slower, diverging flow at the Harang discontinuity. A patch repetition time of some 10 to 30 min was estimated depending on the phase of the substorm.


2008 ◽  
Vol 26 (9) ◽  
pp. 2685-2700 ◽  
Author(s):  
M. Förster ◽  
S. E. Haaland ◽  
G. Paschmann ◽  
J. M. Quinn ◽  
R. B. Torbert ◽  
...  

Abstract. In this study, we investigate statistical, systematic variations of the high-latitude convection cell structure during northward IMF. Using 1-min-averages of Cluster/EDI electron drift observations above the Northern and Southern polar cap areas for six and a half years (February 2001 till July 2007), and mapping the spatially distributed measurements to a common reference plane at ionospheric level in a magnetic latitude/MLT grid, we obtained regular drift patterns according to the various IMF conditions. We focus on the particular conditions during northward IMF, where lobe cells at magnetic latitudes >80° with opposite (sunward) convection over the central polar cap are a permanent feature in addition to the main convection cells at lower latitudes. They are due to reconnection processes at the magnetopause boundary poleward of the cusp regions. Mapped EDI data have a particular good coverage within the central part of the polar cap, so that these patterns and their dependence on various solar wind conditions are well verified in a statistical sense. On average, 4-cell convection pattern are shown as regular structures during periods of nearly northward IMF with the tendency of a small shift toward negative clock angles. The positions of these high-latitude convection foci are within 79° to 85° magnetic latitude and 09:00–15:00 MLT. The MLT positions are approximately symmetric ±2 h about 11:30 MLT, i.e. slightly offset from midday toward prenoon hours, while the maximum (minimum) potential of the high-latitude cells is at higher magnetic latitudes near their maximum potential difference at ≈−10° to −15° clock angle for the North (South) Hemisphere. With increasing clock angle distances from ≈IMFBz+, a gradual transition occurs from the 4-cell pattern via a 3-cell to the common 2-cell convection pattern, in the course of which one of the medium-scale high-latitude dayside cells diminishes and disappears while the other intensifies and merges with the opposite main cell of the same polarity to form the large "round-shaped" convection cell when approaching a well-known IMFBy-dominated configuration. Opposite scenarios with interchanged roles of the respective cells occur for the opposite turning of the clock angle and at the Southern Hemisphere. The high-latitude dayside cells become more pronounced with increasing magnitude of the IMF vector.


2005 ◽  
Vol 23 (4) ◽  
pp. 1227-1237 ◽  
Author(s):  
E. D. Tereshchenko ◽  
N. Yu. Romanova ◽  
A. V. Koustov

Abstract. The relationship between the orientation of the small-scale ionospheric irregularity anisotropy in a plane perpendicular to the geomagnetic field and the direction of plasma convection in the F region is investigated. The cross-field anisotropy of irregularities is obtained by fitting theoretical expectations for the amplitude scintillations of satellite radio signals to the actual measurements. Information on plasma convection was provided by the SuperDARN HF radars. Joint satellite/radar observations in both the auroral zone and the polar cap are considered. It is shown that the irregularity cross-field anisotropy agrees quite well with the direction of plasma convection with the best agreement for events with quasi-stationary convection patterns.


2000 ◽  
Vol 18 (1) ◽  
pp. 90-98 ◽  
Author(s):  
S. E. Pryse ◽  
A. M. Smith ◽  
L. Kersley ◽  
I. K. Walker ◽  
C. N. Mitchell ◽  
...  

Abstract. Observations are presented of the polar ionosphere under steady, northward IMF. The measurements, made by six complementary experimental techniques, including radio tomography, all-sky and meridian scanning photometer optical imaging, incoherent and coherent scatter radars and satellite particle detection, reveal plasma parameters consistent with ionospheric signatures of lobe reconnection. The optical green-line footprint of the reconnection site is seen to lie in the sunward plasma convection of the lobe cells. Downstream in the region of softer precipitation the reverse energy dispersion of the incoming ions can be identified. A steep latitudinal density gradient at the equatorward edge of the precipitation identifies the general location of an adiaroic boundary, separating the open field lines of polar lobe cells from the closed field of viscous-driven cells. Enhancements in plasma density to the south of the gradient are interpreted as ionisation being reconfigured as it is thrust against the boundary by the antisunward flow of the viscous cells near noon. Each of the instruments individually provides valuable information on certain aspects of the ionosphere, but the paper demonstrates that taken together the different experiments complement each other to give a consistent and comprehensive picture of the dayside polar ionosphere..Key words. Ionosphere (polar ionosphere) · Magnetospheric physics (magnetosphere-ionosphere interactions; polar cap phenomena)


1997 ◽  
Vol 15 (4) ◽  
pp. 403-411 ◽  
Author(s):  
C. Peymirat ◽  
D. Fontaine

Abstract. From data of the European incoherent scatter radar EISCAT, and mainly from its tristatic capabilities, statistical models of steady convection in the auroral ionosphere were achieved for various levels of magnetic activity. We propose here to consistently extend these models to the polar cap, by avoiding the use of a pre-defined convection pattern. Basically, we solve the second-order differential equation governing the polar cap convection potential with the boundary conditions provided by these models. The results display the classical twin-vortex convection pattern, with the cell centres around 17 MLT for the evening cell and largely shifted towards midnight (3–3.5 MLT) for the morning cell, both slightly moving equatorward with activity. For moderate magnetic activities, the convection flow appears approximately oriented along the meridian from 10:00 MLT to 22:00 MLT, while in more active situations, it enters the polar cap at prenoon times following the antisunward direction, and then turns to exit around 21:00 MLT. Finally, from these polar cap patterns combined with the auroral statistical models, we build analytical models of the auroral and polar convection expected in steady magnetic conditions.


2000 ◽  
Vol 18 (8) ◽  
pp. 887-896 ◽  
Author(s):  
P. T. Jayachandran ◽  
J. W. MacDougall

Abstract. Central polar cap convection changes associated with southward turnings of the Interplanetary Magnetic Field (IMF) are studied using a chain of Canadian Advanced Digital Ionosondes (CADI) in the northern polar cap. A study of 32 short duration (~1 h) southward IMF transition events found a three stage response: (1) initial response to a southward transition is near simultaneous for the entire polar cap; (2) the peak of the convection speed (attributed to the maximum merging electric field) propagates poleward from the ionospheric footprint of the merging region; and (3) if the change in IMF is rapid enough, then a step in convection appears to start at the cusp and then propagates antisunward over the polar cap with the velocity of the maximum convection. On the nightside, a substorm onset is observed at about the time when the step increase in convection (associated with the rapid transition of IMF) arrives at the polar cap boundary.Key words: Ionosphere (plasma convection; polar ionosphere) - Magnetospheric physics (solar wind - magnetosphere interaction)


2000 ◽  
Vol 18 (9) ◽  
pp. 1043-1053 ◽  
Author(s):  
A. M. Smith ◽  
S. E. Pryse ◽  
L. Kersley

Abstract. Observations by the EISCAT Svalbard radar in summer have revealed electron density enhancements in the magnetic noon sector under conditions of IMF Bz southward. The features were identified as possible candidates for polar-cap patches drifting anti-Sunward with the plasma flow. Supporting measurements by the EISCAT mainland radar, the CUTLASS radar and DMSP satellites, in a multi-instrument study, suggested that the origin of the structures lay upstream at lower latitudes, with the modulation in density being attributed to variability in soft-particle precipitation in the cusp region. It is proposed that the variations in precipitation may be linked to changes in the location of the reconnection site at the magnetopause, which in turn results in changes in the energy distribution of the precipitating particles.Key words: Ionosphere (ionosphere-magnetosphere interactions; plasma temperature and density; polar ionosphere)


Sign in / Sign up

Export Citation Format

Share Document