scholarly journals Artificial intelligence facilitates decision-making in the treatment of lumbar disc herniations

Author(s):  
André Wirries ◽  
Florian Geiger ◽  
Ahmed Hammad ◽  
Ludwig Oberkircher ◽  
Ingmar Blümcke ◽  
...  

Abstract Purpose Apart from patients with severe neurological deficits, it is not clear whether surgical or conservative treatment of lumbar disc herniations is superior for the individual patient. We investigated whether deep learning techniques can predict the outcome of patients with lumbar disc herniation after 6 months of treatment. Methods The data of 60 patients were used to train and test a deep learning algorithm with the aim to achieve an accurate prediction of the ODI 6 months after surgery or the start of conservative therapy. We developed an algorithm that predicts the ODI of 6 randomly selected test patients in tenfold cross-validation. Results A 100% accurate prediction of an ODI range could be achieved by dividing the ODI scale into 12% sections. A maximum absolute difference of only 3.4% between individually predicted and actual ODI after 6 months of a given therapy was achieved with our most powerful model. The application of artificial intelligence as shown in this work also allowed to compare the actual patient values after 6 months with the prediction for the alternative therapy, showing deviations up to 18.8%. Conclusion Deep learning in the supervised form applied here can identify patients at an early stage who would benefit from conservative therapy, and on the contrary avoid painful and unnecessary delays for patients who would profit from surgical therapy. In addition, this approach can be used in many other areas of medicine as an effective tool for decision-making when choosing between opposing treatment options, despite small patient groups.

2020 ◽  
Vol 114 ◽  
pp. 242-245
Author(s):  
Jootaek Lee

The term, Artificial Intelligence (AI), has changed since it was first coined by John MacCarthy in 1956. AI, believed to have been created with Kurt Gödel's unprovable computational statements in 1931, is now called deep learning or machine learning. AI is defined as a computer machine with the ability to make predictions about the future and solve complex tasks, using algorithms. The AI algorithms are enhanced and become effective with big data capturing the present and the past while still necessarily reflecting human biases into models and equations. AI is also capable of making choices like humans, mirroring human reasoning. AI can help robots to efficiently repeat the same labor intensive procedures in factories and can analyze historic and present data efficiently through deep learning, natural language processing, and anomaly detection. Thus, AI covers a spectrum of augmented intelligence relating to prediction, autonomous intelligence relating to decision making, automated intelligence for labor robots, and assisted intelligence for data analysis.


2021 ◽  
Vol 20 ◽  
pp. 153303382110163
Author(s):  
Danju Huang ◽  
Han Bai ◽  
Li Wang ◽  
Yu Hou ◽  
Lan Li ◽  
...  

With the massive use of computers, the growth and explosion of data has greatly promoted the development of artificial intelligence (AI). The rise of deep learning (DL) algorithms, such as convolutional neural networks (CNN), has provided radiation oncologists with many promising tools that can simplify the complex radiotherapy process in the clinical work of radiation oncology, improve the accuracy and objectivity of diagnosis, and reduce the workload, thus enabling clinicians to spend more time on advanced decision-making tasks. As the development of DL gets closer to clinical practice, radiation oncologists will need to be more familiar with its principles to properly evaluate and use this powerful tool. In this paper, we explain the development and basic concepts of AI and discuss its application in radiation oncology based on different task categories of DL algorithms. This work clarifies the possibility of further development of DL in radiation oncology.


2021 ◽  
Author(s):  
Yew Kee Wong

Deep learning is a type of machine learning that trains a computer to perform human-like tasks, such as recognizing speech, identifying images or making predictions. Instead of organizing data to run through predefined equations, deep learning sets up basic parameters about the data and trains the computer to learn on its own by recognizing patterns using many layers of processing. This paper aims to illustrate some of the different deep learning algorithms and methods which can be applied to artificial intelligence analysis, as well as the opportunities provided by the application in various decision making domains.


Author(s):  
Abraham Rudnick

Artificial intelligence (AI) and its correlates, such as machine and deep learning, are changing health care, where complex matters such as comoribidity call for dynamic decision-making. Yet, some people argue for extreme caution, referring to AI and its correlates as a black box. This brief article uses philosophy and science to address the black box argument about knowledge as a myth, concluding that this argument is misleading as it ignores a fundamental tenet of science, i.e., that no empirical knowledge is certain, and that scientific facts – as well as methods – often change. Instead, control of the technology of AI and its correlates has to be addressed to mitigate such unexpected negative consequences.


2020 ◽  
Vol 46 (7) ◽  
pp. 478-481 ◽  
Author(s):  
Joshua James Hatherley

Artificial intelligence (AI) is expected to revolutionise the practice of medicine. Recent advancements in the field of deep learning have demonstrated success in variety of clinical tasks: detecting diabetic retinopathy from images, predicting hospital readmissions, aiding in the discovery of new drugs, etc. AI’s progress in medicine, however, has led to concerns regarding the potential effects of this technology on relationships of trust in clinical practice. In this paper, I will argue that there is merit to these concerns, since AI systems can be relied on, and are capable of reliability, but cannot be trusted, and are not capable of trustworthiness. Insofar as patients are required to rely on AI systems for their medical decision-making, there is potential for this to produce a deficit of trust in relationships in clinical practice.


Neurosurgery ◽  
2001 ◽  
Vol 48 (2) ◽  
pp. 334-338 ◽  
Author(s):  
A. Giancarlo Vishteh ◽  
Curtis A. Dickman

Abstract OBJECTIVE To demonstrate the feasibility of anterior lumbar microdiscectomy in patients with recurrent, sequestered lumbar disc herniations. METHODS Between 1997 and 1999, six patients underwent a muscle-sparing “minilaparotomy” approach and subsequent microscopic anterior lumbar microdiscectomy and fragmentectomy for recurrent lumbar disc extrusions at L5–S1 (n = 4) or L4–L5 (n = 2). A contralateral distraction plug permitted ipsilateral discectomy under microscopic magnification. Effective resection of the extruded disc fragments was accomplished by opening the posterior longitudinal ligament. Interbody fusion was performed by placing cylindrical threaded titanium cages (n = 4) or threaded allograft bone dowels (n = 2). RESULTS There were no complications, and blood loss was minimal. Follow-up magnetic resonance imaging revealed complete resection of all herniated disc material. Plain x-rays revealed excellent interbody cage position. Radicular pain and neurological deficits resolved in all six patients (mean follow-up, 14 mo). CONCLUSION Anterior lumbar microdiscectomy with interbody fusion provides a viable alternative for the treatment of recurrent lumbar disc herniations. Recurrent herniated disc fragments can be removed completely under direct microscopic visualization, and interbody fusion can be performed in the same setting.


Author(s):  
Mehmet Ali Şimşek ◽  
Zeynep Orman

Nowadays, the main features of Industry 4.0 are interpreted to the ability of machines to communicate with each other and with a system, increasing the production efficiency and development of the decision-making mechanisms of robots. In these cases, new analytical algorithms of Industry 4.0 are needed. By using deep learning technologies, various industrial challenging problems in Industry 4.0 can be solved. Deep learning provides algorithms that can give better results on datasets owing to hidden layers. In this chapter, deep learning methods used in Industry 4.0 are examined and explained. In addition, data sets, metrics, methods, and tools used in the previous studies are explained. This study can lead to artificial intelligence studies with high potential to accelerate the implementation of Industry 4.0. Therefore, the authors believe that it will be very useful for researchers and practitioners who want to do research on this topic.


2021 ◽  
Vol 12 ◽  
pp. 352
Author(s):  
Dinesh Naidoo

Background: Most lumbar disc herniations can be successfully treated conservatively. However, massive lumbar disc herniations are often treated surgically to avoid permanent cauda equina syndromes/neurological deficits and potential litigation. Nevertheless, here, we present a 51-year-old female who refused lumbar surgery due to coronavirus disease 2019 (COVID-19) and sustained a full spontaneous recovery without surgical intervention. Case Description: A 51-year-old female presented with a massive lumbar disc herniation at the L5S1 level. Despite refusing surgery for fear of getting COVID-19, she spontaneously neurologically improved without any residual neurological or radiographic sequelae. Conclusion: Although the vast majority of patients with massive lumbar disc herniations are managed surgically, there are rare instances in which nonoperative management may be successful.


Author(s):  
JZT Sim ◽  
QW Fong ◽  
WM Huang ◽  
CH Tan

With the advent of artificial intelligence (AI), machines are increasingly being used to complete complicated tasks, yielding remarkable results. Machine learning (ML) is the most relevant subset of AI in medicine, which will soon become an integral part of our everyday practice. Therefore, physicians should acquaint themselves with ML and AI, and their role as an enabler rather than a competitor. Herein, we introduce basic concepts and terms used in AI and ML, and aim to demystify commonly used AI/ML algorithms such as learning methods including neural networks/deep learning, decision tree and application domain in computer vision and natural language processing through specific examples. We discuss how machines are already being used to augment the physician’s decision-making process, and postulate the potential impact of ML on medical practice and medical research based on its current capabilities and known limitations. Moreover, we discuss the feasibility of full machine autonomy in medicine.


Sign in / Sign up

Export Citation Format

Share Document