Origin of the pre-tropical storm Debby (2006) African easterly wave-mesoscale convective system

2013 ◽  
Vol 120 (3-4) ◽  
pp. 123-144 ◽  
Author(s):  
Yuh-Lang Lin ◽  
Liping Liu ◽  
Guoqing Tang ◽  
James Spinks ◽  
Wilson Jones
2014 ◽  
Vol 71 (7) ◽  
pp. 2763-2781 ◽  
Author(s):  
Stefan F. Cecelski ◽  
Da-Lin Zhang ◽  
Takemasa Miyoshi

Abstract In this study, the predictability of and parametric differences in the genesis of Hurricane Julia (2010) are investigated using 20 mesoscale ensemble forecasts with the finest resolution of 1 km. Results show that the genesis of Julia is highly predictable, with all but two members undergoing genesis. Despite the high predictability, substantial parametric differences exist between the stronger and weaker members. Notably, the strongest-developing member exhibits large upper-tropospheric warming within a storm-scale outflow during genesis. In contrast, the nondeveloping member has weak and more localized warming due to inhibited convective development and a lack of a storm-scale outflow. A reduction in the Rossby radius of deformation in the strongest member aids in the accumulation of the warmth, while little contraction takes place in the nondeveloping member. The warming in the upper troposphere is responsible for the development of meso-α-scale surface pressure falls and a meso-β surface low in the strongest-developing member. Such features fail to form in the nondeveloping member as weak upper-tropospheric warming is unable to induce meaningful surface pressure falls. Cloud ice content is nearly doubled in the strongest member as compared to its nondeveloping counterparts, suggesting the importance of depositional heating of the upper troposphere. It is found that the stronger member undergoes genesis faster due to the lack of convective inhibition near the African easterly wave (AEW) pouch center prior to genesis. This allows for the faster development of a mesoscale convective system and storm-scale outflow, given the already favorable larger-scale conditions.


2012 ◽  
Vol 140 (4) ◽  
pp. 1177-1190 ◽  
Author(s):  
Klaus Dolling ◽  
Gary M. Barnes

At 0600 UTC 22 September 2001, Humberto was a tropical depression with a minimum central pressure of 1010 hPa. Twelve hours later, when the first global positioning system dropwindsondes (GPS sondes) were jettisoned, Humberto’s minimum central pressure was 1000 hPa and it had attained tropical storm strength. Thirty GPS sondes, radar from the WP-3D, and in situ aircraft measurements are utilized to observe thermodynamic structures in Humberto and their relationship to stratiform and convective elements during the early stage of the formation of an eye. The analysis of Tropical Storm Humberto offers a new view of the pre-wind-induced surface heat exchange (pre-WISHE) stage of tropical cyclone evolution. Humberto contained a mesoscale convective vortex (MCV) similar to observations of other developing tropical systems. The MCV advects the exhaust from deep convection in the form of an anvil cyclonically over the low-level circulation center. On the trailing edge of the anvil an area of mesoscale descent induces dry adiabatic warming in the lower troposphere. The nascent warm core at low levels causes the initial drop in pressure at the surface and acts to cap the boundary layer (BL). As BL air flows into the nascent eye, the energy content increases until the energy is released from under the cap on the down shear side of the warm core in the form of vigorous cumulonimbi, which become the nascent eyewall. This series of events show one possible path in which a mesoscale convective system may evolve into a warm-cored structure and intensify into a hurricane.


2006 ◽  
Vol 63 (1) ◽  
pp. 268-287 ◽  
Author(s):  
G. M. Heymsfield ◽  
Joanne Simpson ◽  
J. Halverson ◽  
L. Tian ◽  
E. Ritchie ◽  
...  

Abstract Tropical Storm Chantal during August 2001 was a storm that failed to intensify over the few days prior to making landfall on the Yucatan Peninsula. An observational study of Tropical Storm Chantal is presented using a diverse dataset including remote and in situ measurements from the NASA ER-2 and DC-8 and the NOAA WP-3D N42RF aircraft and satellite. The authors discuss the storm structure from the larger-scale environment down to the convective scale. Large vertical shear (850–200-hPa shear magnitude range 8–15 m s−1) plays a very important role in preventing Chantal from intensifying. The storm had a poorly defined vortex that only extended up to 5–6-km altitude, and an adjacent intense convective region that comprised a mesoscale convective system (MCS). The entire low-level circulation center was in the rain-free western side of the storm, about 80 km to the west-southwest of the MCS. The MCS appears to have been primarily the result of intense convergence between large-scale, low-level easterly flow with embedded downdrafts, and the cyclonic vortex flow. The individual cells in the MCS such as cell 2 during the period of the observations were extremely intense, with reflectivity core diameters of 10 km and peak updrafts exceeding 20 m s−1. Associated with this MCS were two broad subsidence (warm) regions, both of which had portions over the vortex. The first layer near 700 hPa was directly above the vortex and covered most of it. The second layer near 500 hPa was along the forward and right flanks of cell 2 and undercut the anvil divergence region above. There was not much resemblance of these subsidence layers to typical upper-level warm cores in hurricanes that are necessary to support strong surface winds and a low central pressure. The observations are compared to previous studies of weakly sheared storms and modeling studies of shear effects and intensification. The configuration of the convective updrafts, low-level circulation, and lack of vertical coherence between the upper- and lower-level warming regions likely inhibited intensification of Chantal. This configuration is consistent with modeled vortices in sheared environments, which suggest the strongest convection and rain in the downshear left quadrant of the storm, and subsidence in the upshear right quadrant. The vertical shear profile is, however, different from what was assumed in previous modeling in that the winds are strongest in the lowest levels and the deep tropospheric vertical shear is on the order of 10–12 m s−1.


2020 ◽  
Vol 77 (10) ◽  
pp. 3567-3584
Author(s):  
Justin W. Whitaker ◽  
Eric D. Maloney

AbstractThis study investigates the transition of a Panama Bight mesoscale convective system (MCS) into the easterly wave (EW) that became Hurricane Carlotta (2012). Reanalysis, observations, and a convective-permitting Weather Research and Forecasting (WRF) Model simulation are used to analyze the processes contributing to EW genesis. A vorticity budget analysis shows that convective coupling and vortex stretching are very important to the transition in this case, while horizontal advection is mostly responsible for the propagation of the system. In the model, the disturbance is dominated by stratiform vertical motion profiles and a midlevel vortex, while the system is less top-heavy and is characterized by more prominent low-level vorticity later in the transition in reanalysis. The developing disturbance starts its evolution as a mesoscale convective system in the Bight of Panama. Leading up to MCS formation the Chocó jet intensifies, and during the MCS-to-EW transition the Papagayo jet strengthens. Differences in the vertical structure of the system between reanalysis and the model suggest that the relatively more bottom-heavy disturbance in reanalysis may have stronger interactions with the Papagayo jet. Field observations like those collected during the Organization of Tropical East Pacific Convection (OTREC) campaign are needed to further our understanding of this east Pacific EW genesis pathway and the factors that influence it, including the important role for the vertical structure of the developing disturbances in the context of the vorticity budget.


2017 ◽  
Vol 145 (6) ◽  
pp. 2257-2279 ◽  
Author(s):  
Bryan J. Putnam ◽  
Ming Xue ◽  
Youngsun Jung ◽  
Nathan A. Snook ◽  
Guifu Zhang

Abstract Ensemble-based probabilistic forecasts are performed for a mesoscale convective system (MCS) that occurred over Oklahoma on 8–9 May 2007, initialized from ensemble Kalman filter analyses using multinetwork radar data and different microphysics schemes. Two experiments are conducted, using either a single-moment or double-moment microphysics scheme during the 1-h-long assimilation period and in subsequent 3-h ensemble forecasts. Qualitative and quantitative verifications are performed on the ensemble forecasts, including probabilistic skill scores. The predicted dual-polarization (dual-pol) radar variables and their probabilistic forecasts are also evaluated against available dual-pol radar observations, and discussed in relation to predicted microphysical states and structures. Evaluation of predicted reflectivity (Z) fields shows that the double-moment ensemble predicts the precipitation coverage of the leading convective line and stratiform precipitation regions of the MCS with higher probabilities throughout the forecast period compared to the single-moment ensemble. In terms of the simulated differential reflectivity (ZDR) and specific differential phase (KDP) fields, the double-moment ensemble compares more realistically to the observations and better distinguishes the stratiform and convective precipitation regions. The ZDR from individual ensemble members indicates better raindrop size sorting along the leading convective line in the double-moment ensemble. Various commonly used ensemble forecast verification methods are examined for the prediction of dual-pol variables. The results demonstrate the challenges associated with verifying predicted dual-pol fields that can vary significantly in value over small distances. Several microphysics biases are noted with the help of simulated dual-pol variables, such as substantial overprediction of KDP values in the single-moment ensemble.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 718
Author(s):  
Cong Pan ◽  
Jing Yang ◽  
Kun Liu ◽  
Yu Wang

Sprites are transient luminous events (TLEs) that occur over thunderstorm clouds that represent the direct coupling relationship between the troposphere and the upper atmosphere. We report the evolution of a mesoscale convective system (MCS) that produced only one sprite event, and the characteristics of this thunderstorm and the related lightning activity are analyzed in detail. The results show that the parent flash of the sprite was positive cloud-to-ground lightning (+CG) with a single return stroke, which was located in the trailing stratiform region of the MCS with a radar reflectivity of 25 to 35 dBZ. The absolute value of the negative CG (−CG) peak current for half an hour before and after the occurrence of the sprite was less than 50 kA, which was not enough to produce the sprite. Sprites tend to be produced early in the maturity-to-dissipation stage of the MCS, with an increasing percentage of +CG to total CG (POP), indicating that the sprite production was the attenuation of the thunderstorm and the area of the stratiform region.


2017 ◽  
Vol 32 (2) ◽  
pp. 511-531 ◽  
Author(s):  
Luke E. Madaus ◽  
Clifford F. Mass

Abstract Smartphone pressure observations have the potential to greatly increase surface observation density on convection-resolving scales. Currently available smartphone pressure observations are tested through assimilation in a mesoscale ensemble for a 3-day, convectively active period in the eastern United States. Both raw pressure (altimeter) observations and 1-h pressure (altimeter) tendency observations are considered. The available observation density closely follows population density, but observations are also available in rural areas. The smartphone observations are found to contain significant noise, which can limit their effectiveness. The assimilated smartphone observations contribute to small improvements in 1-h forecasts of surface pressure and 10-m wind, but produce larger errors in 2-m temperature forecasts. Short-term (0–4 h) precipitation forecasts are improved when smartphone pressure and pressure tendency observations are assimilated as compared with an ensemble that assimilates no observations. However, these improvements are limited to broad, mesoscale features with minimal skill provided at convective scales using the current smartphone observation density. A specific mesoscale convective system (MCS) is examined in detail, and smartphone pressure observations captured the expected dynamic structures associated with this feature. Possibilities for further development of smartphone observations are discussed.


Sign in / Sign up

Export Citation Format

Share Document