Compilation method for 1 km grid data of monthly mean air temperature for quantitative assessments of climate change impacts

2009 ◽  
Vol 101 (3-4) ◽  
pp. 421-431 ◽  
Author(s):  
Hideki Ueyama ◽  
Sachiho Adachi ◽  
Fujio Kimura
2010 ◽  
Vol 7 (5) ◽  
pp. 6823-6850 ◽  
Author(s):  
H. Xu ◽  
R. G. Taylor ◽  
Y. Xu

Abstract. Quantitative evaluations of the impacts of climate change on water resources are primarily constrained by uncertainty in climate projections from GCMs. In this study we assess uncertainty in the impacts of climate change on river discharge in two catchments of the River Yangtze and Yellow Basins that feature contrasting climate regimes (humid and semi-arid). Specifically we quantify uncertainty associated with GCM structure from a subset of CMIP3 AR4 GCMs (HadCM3, HadGEM1, CCSM3.0, IPSL, ECHAM5, CSIRO, CGCM3.1), SRES emissions scenarios (A1B, A2, B1, B2) and prescribed increases in global mean air temperature (1 °C to 6 °C). Climate projections, applied to semi-distributed hydrological models (SWAT 2005) in both catchments, indicate trends toward warmer and wetter conditions. For prescribed warming scenarios of 1 °C to 6 °C, linear increases in mean annual river discharge, relative to baseline (1961–1990), for the River Xiangxi and River Huangfuchuan are +9% and 11% per +1 °C, respectively. Intra-annual changes include increases in flood (Q05) discharges for both rivers as well as a shift in the timing of flood discharges from summer to autumn and a rise (24 to 93%) in dry season (Q95) discharge for the River Xiangxi. Differences in projections of mean annual river discharge between SRES emission scenarios using HadCM3 are comparatively minor for the River Xiangxi (13% to 17% rise from baseline) but substantial (73% to 121%) for the River Huangfuchuan. With one minor exception of a slight (−2%) decrease in river discharge projected using HadGEM1 for the River Xiangxi, mean annual river discharge is projected to increase in both catchments under both the SRES A1B emission scenario and 2° rise in global mean air temperature using all AR4 GCMs on the CMIP3 subset. For the River Xiangxi, there is great uncertainty associated with GCM structure in the magnitude of the rise in flood (Q05) discharges (−1% to 41% under SRES A1B and −3% to 41% under 2° global warming) and dry season (Q95) discharges (2% to 55% under SRES A1B and 2% to 39% under 2° global warming). For the River Huangfuchuan, all GCMs project a rise in the Q05 flow but there is substantial uncertainty in the magnitude of this rise (7% to 70% under SRES A1B and 2% to 57% under 2° global warming). Greatest differences in the projected hydrologic changes are associated with GCMs in both catchments than emission scenarios and climate sensitivity. Critically, estimated uncertainty in projections of mean annual flows is less than that calculated for extreme (Q05, Q95) flows. This research suggest that the common approach of reporting of climate change impacts on river in terms of mean annual flows may mask the magnitude of uncertainty in flows of most importance to water managers.


2021 ◽  
Vol 893 (1) ◽  
pp. 012035
Author(s):  
Ikrom Mustofa ◽  
Perdinan ◽  
Syafararisa Dian Pratiwi ◽  
Suvany Aprilia ◽  
Raden Eliasar Prabowo Tjahjono ◽  
...  

Abstract Designing climate change adaptation actions are considerably a challenge, as the actions should be targeted uniquely addressing climate change impacts. One of the challenges is to determine climate change adaptation sites. The complexity raises considering climate change impact a wide range of economic sectors, which require a lot of resources to conduct a comprehensive climate change assessments. This study proposes the use of climate change hotspots as an initiative to firstly consider the potential targeted sites. The target of global efforts to maintain air temperature under 2°C was employed as a clue to prioritize areas that air temperature is increasing beyond the thresholds to which can affect human activities. This study employed spatial and threshold analysis to develop climate change hotspots of projected temperature change for 2021-2050 over Indonesia. The thresholds were defined by considering the effects of base temperature of 32 °C, 35 °C, and 38 °C on agriculture, environment, and human health in combination with elevated temperature from 0.75 to 2 °C. The initiative method was applied to the baseline and projected air temperature obtained from higher resolution of climate model outputs simulated under representative carbon pathway scenario of 4.5 (RCP 4.5 and 8.5) as a case study. The maps of climate change hotspots provide the potential targeted areas for climate change adaptation actions. Referring to the target of suppressing global temperatures below 2°C, we identified the distribution of climate change hotspots in Indonesia with a scenario of increasing temperature of 2°C from baseline conditions so that future air temperatures will be more than 35°C. The maps can also be combined with the other maps related to climate change analyses, which are available in Indonesia such as SIDIK to refine the priority areas and/or more general geographic information such as city location. As an example, the overlay of climate change hotspots and city location can provide early anticipation on which city will experience urban heat island. The development of climate change hotspots nationally is also expected to initiate climate change services that can be provided to the end users to ease them in defining suitable actions to adapt to the impacts of climate change.


2017 ◽  
Vol 18 (2) ◽  
pp. 431-449 ◽  
Author(s):  
James O. Knighton ◽  
Arthur DeGaetano ◽  
M. Todd Walter

Abstract Watershed flooding is a function of meteorological and hydrologic catchment conditions. Climate change is anticipated to affect air temperature and precipitation patterns such as altered total precipitation, increased intensity, and shorter event durations in the northeastern United States. While significant work has been done to estimate future meteorological conditions, much is currently unknown about future changes to distributions of hydrologic state variables. High-resolution hydrologic simulations of Fall Creek (Tompkins County, New York), a small temperate watershed (324 km2) with seasonal snowmelt, are performed to evaluate future climate change impacts on flood hydrology. The effects of hydrologic state and environmental variables on river flood stage are isolated and the importance of groundwater elevation, unsaturated soil moisture, snowpack, and air temperature is demonstrated. It is shown that the temporal persistence of these hydrologic state variables allows for an influence on watershed flood hydrology for up to 20 days. Finally, six hypothetical climate change forcing scenarios are simulated to estimate the influence of catchment conditions on the watershed runoff response. The possibility of drier summers and wetter springs with a reduced winter snowpack in the Northeast is also simulated. These hydrologic changes influence flood discharge in the opposite direction as climate effects because of a reduced snowpack accumulation and melt time. Strong hydrologic state influence on flood discharge may be most attributable to increased air temperature and decreased precipitation. Hydrologic state variables may change both the location and shape of seasonal flood discharge distributions despite expected consistency in the shape of precipitation statistic distributions.


2021 ◽  
Author(s):  
Giannis Lemesios ◽  
Gianna Kitsara ◽  
Konstantinos V. Varotsos ◽  
Basil Psiloglou ◽  
Christos Giannakopoulos

<p>Ιn the framework of two European Projects, the LIFE URBANPROOF and LIFE TERRACESCAPE, a network of 24 meteorological stations has been installed for recording meteorological parameters and climate indices for the monitoring of impacts of climate change on urban and agricultural areas as well as for the assessment of respective adaptation measures.</p><p>Regarding the urban environment, the study aims to estimate the Urban Heat Island (UHI) effect in the Greater Athens’ Municipality of Peristeri, Greece, by analysing data from the meteorological stations installed (since January 2020) in different urban surroundings and investigating relative changes in surface temperatures and perceived thermal discomfort (HUMIDEX) thus identifying hot and cool spots at the local scale. The UHI mapping in the Municipality of Peristeri was designed and implemented in such a way, as to provide accurate information about heat stress conditions across different parts of the city. Fully automated sensors of air temperature and relative humidity were installed at eleven (11) sites throughout the municipality, covering a wide range of urban characteristics, such as densely populated areas, open spaces, municipal parks etc., where local climatic conditions were expected to show a degree of variation.</p><p>As regards the rural environment, the study intends to estimate the anticipated changes of the micro-climate in the Aegean island of Andros, Greece after land-use interventions, which are considering the use of drystone terraces as green infrastructures resilient to climate change impacts. To that end, a network of 13 meteorological stations has been installed in selected rural areas of Andros since June 2018 for monitoring purposes. The thirteen meteorological stations, 12 small autonomous stations and 1 automated, currently operating on Andros Island continue (till now days) to generate baseline (micro-) climatic data, providing basic meteorological parameters such as air temperature and relative humidity. In addition, the valuable information, based on observational data from installed network of the meteorological stations, located either at currently abandoned terrace sites (project plots) or cultivated sites of Andros will be used to provide a solid basis for comparisons with changes projected for the future climate, combined with climatic indices which directly or indirectly affect agriculture in the monitoring areas.</p><p> </p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Helder Fraga ◽  
João A. Santos

Air temperature plays a major role in the growth cycle of fruit trees. Chilling and forcing are two of the main mechanisms that drive temperate fruit development, namely dormancy and active plant development. Given the strong sensitivity of these crops to air temperature and the foreseeable warming under future climates, it becomes imperative to analyze climate change impacts for fruit trees. The fruit sector in Portugal has risen significantly over the last decades, gaining increasing importance both internally and through exports. The present research assesses the impacts of climate change on the chilling and forcing for economically relevant fruit trees in Portugal, namely apples, oranges, pears, and plums. To assess temperate fruit chilling and forcing conditions, the chilling portions (CP) and growing degree-hours (GDH) were computed over Portugal, for the recent-past (1989–2005) and future (2021–2080) periods, following two anthropogenic radiative forcing scenarios (RCP4.5 and RCP8.5). Future climate data were obtained from four regional-global climate model pairs to account for model uncertainties. Bias-correction methodologies were also applied. A spatial analysis over the main regions with PDO “Protected Denomination of Origin” or PDI “Protected Geographical Indication” of origin of each fruit tree was performed. Future projections show a clear decrease in chilling for all regions and fruit types in Portugal. Nonetheless, given the current chilling values in Portugal and the relative importance of chilling accumulation for each fruit type, these changes are more significant for certain varieties of apples than for other types of fruit. Regarding forcing, the future projections highlight an increase in its values throughout the different fruit tree regions in Portugal, which should lead to earlier phenological timings. These changes may bring limitations to some of the most important Portuguese temperate fruit regions. The planning of suitable adaptation measures against these threats is critical to control the risk of exposure to climate change, thus warranting the future sustainability of the Portuguese fruit sector, which is currently of foremost relevance to the national food security and economy.


2019 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)

Sign in / Sign up

Export Citation Format

Share Document