Petrographic and geochemical characteristics of the Paleogene sedimentary rocks from the North Jiangsu Basin, Eastern China: implications for provenance and tectonic setting

2013 ◽  
Vol 108 (4) ◽  
pp. 571-588 ◽  
Author(s):  
Ni Zhang ◽  
Chun-Ming Lin ◽  
Xia Zhang
Author(s):  
Nadja Drabon ◽  
Donald R. Lowe

One of the major challenges in early Earth geology is the interpretation of the nature of the crust and tectonic processes due to the limited exposures of Archean rocks. This question is predominantly addressed by numerical modeling, structural geology, geochemical analyses, and petrological approaches. Here we report on the reconstruction of one of the oldest, well-preserved volcano-sedimentary sequences on Earth, the 3.28−3.22 Ga Fig Tree Group in the Barberton Greenstone Belt, South Africa, based on geochronology, provenance, and stratigraphy to provide new constraints on the nature of tectonic processes in the Archean. The Fig Tree basin was asymmetric and the onset of deposition varied across the greenstone belt. The Fig Tree Group is now preserved in east-west oriented bands of fault-bounded structural belts with those preserved in the southern parts of the greenstone belt showing an onset of deposition at 3.28 Ga, those in the center at 3.26 Ga, and those in the north at 3.24 Ga. Stratigraphically, the rocks display a general up-section trend from deeper to shallower-water deposition and/or from finer- to coarser-grained sedimentary rocks. Associated with this up-section stratigraphic trend, the sedimentary rocks show a change in provenance from more regionally similar to more locally variable, and an increase in felsic volcanic activity, especially toward the closure of Fig Tree deposition. The data is consistent with formation of the Fig Tree Group in a compressional tectonic setting by deposition in a foreland basin that experienced progressive accretion of crustal terranes onto a northward prograding fold-and-thrust belt.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhaolin Wang ◽  
Xiaoming Zheng ◽  
Guixiang Meng ◽  
Hejun Tang ◽  
Tonghui Fang

The Hongshishan mafic-ultramafic complex is situated in the north of the Beishan orogenic collage and the southern part of the Central Asian Orogenic Belt. This paper outlines the petrological, geochemical, and mineralogical data of the Hongshishan ultramafic–mafic complex in the Beishan orogenic collage to constrain its tectonic setting and mineralization. The lithological units of the complex include dunite, clinopyroxene peridotite, pyroxenite, and gabbro. The complex showed concentric zonation, from clinopyroxene peridotite and dunite in the core to pyroxenite and gabbro in the margin. These ultramafic–mafic rocks are characterized by cumulate and layering textures. Field observations, petrography, and significant elemental composition variation, a decreasing sequence of ferromagnesian minerals (Mg#), olivine Fo, and spinel Cr#, all show fractional crystallization trends from dunites through clinopyroxene peridotite and pyroxenite, to gabbros. There are systematic trends among the primary oxides, e.g., CaO, TiO2, and Al2O3, with MgO, suggesting a fractional crystallization trend. SiO2 and Al2O3 increased, which coupled with decreasing MgO, suggested olivine fractionation. The negative correlations of CaO and Al2O3 with MgO meant the accumulation of spinel and mafic minerals. The compositions of olivines from the dunite and clinopyroxene peridotite in the Hongshishan plot within the Alaskan Global trend fields displayed a typical fractional crystallization trend similar to olivines in an Alaskan-type complex. The clinopyroxenes in the clinopyroxene peridotite primarily occur as a diopside and appear in the field of an Alaskan-type complex. The absence of orthopyroxene, less hydrous, and free of fluid inclusions in the chrome spinels means the absence of a magmatic origin of chromite-bearing peridotites in hydrous parental melts or scarce hydrous melts. Serpentinization, carbonatization, subduction modification, and enrichment may account for the LILE-enrichment and HFSE-depletion of peridotite rocks. Negative Eu anomalies and REE fractionations of mafic-ultramafic rocks may not be directly attributed to crustal assimilation. Petrological, mineralogical, and geochemical characteristics indicated the Hongshishan complex is not the member compositions of a typical ophiolite. However, it displays many similarities to Alaskan-type mafic-ultramafic intrusions related to subduction or arc magmas setting at ∼366.1 Ma and suffered subduction modification and enrichment. The Hongshishan complex is a unique Ir-Ru-rich chromite deposit in the southern margin of the Altaids orogenic belt. Chromites occur primarily in light yellow dunites, with banded, lenticular, veined, thin-bedded, and brecciated textures. Part of the chromite enrichment in IPGE (Os, Ir, Ru) and the chondrite-normalized spider diagram of PGE showed steep right-facing sloped patterns similar to those of the PGE-rich ophiolitic chromites.


2021 ◽  
pp. 1-21
Author(s):  
Yun-Xi Meng ◽  
Zhi-Cheng Zhang ◽  
Jian-Zhou Tang ◽  
Huai-Hui Zhang ◽  
Qi Wang ◽  
...  

Abstract The Harihada–Chegendalai ophiolitic mélange, which is located between the Bainaimiao arc and the North China Craton, holds significant clues regarding the tectonic setting of the southern margin of the Central Asian Orogenic Belt. The ophiolitic mélange is mainly composed of gabbroic and serpentinized ultramafic rocks. Here, zircon U–Pb dating, in situ zircon Hf isotopic, whole-rock geochemical and in situ mineral chemical data from the ophiolitic mélange are reported. The zircons in the gabbroic rocks yielded concordia U–Pb ages of 450–448 Ma and exhibited slightly positive ϵHf(t) values (0.87–4.34). The geochemical characteristics of the gabbroic rocks indicate that they were generated from a mantle wedge metasomatized by subduction-derived melts from sediments with continental crust contamination, in a fore-arc tectonic setting. These rocks also experienced the accumulation of plagioclase. The geochemical characteristics of the ultramafic rocks and their Cr-spinels indicate that they may constitute part of residual mantle that has experienced a high degree of partial melting and has interacted with fluids/melts released from the subducted slab in the same fore-arc tectonic setting. The ophiolitic mélange may therefore have formed in this fore-arc tectonic setting, resulting from the northward subduction of the South Bainaimiao Ocean beneath the Bainaimiao arc during Late Ordovician time, prior to the collision between the Bainaimiao arc and the North China Craton during the Silurian to Carboniferous periods.


2020 ◽  
Vol 4 (1) ◽  
pp. 01-07
Author(s):  
Blestmond A. Brako ◽  
Gordon Foli ◽  
Etornam B. Fiadonu ◽  
Chiri Amedjoe ◽  
Derrick Aikins ◽  
...  

Paleoproterozoic sedimentary rocks associated with the Man Shield of West Africa are perceived to be similar, irrespective of their locality. This research seeks to establish the provenance and tectonic setting of these rocks to ascertain any such similarity perception, based on information from two localities. The study uses modal mineral estimations to reconstruct the source, paleocurrent, paleoclimate and relief of some conglomerates and sandstones from Chagupana and Tarkwa areas in Ghana. Chagupana conglomerate has igneous and metamorphic provenances, while Kawere conglomerate has metamorphic provenance. Average mineralogical composition of Chagupana sandstone is Q53-F45-R3 and classify as arkose. Tarkwa suites of Huni, Kawere and Banket sandstones are composed of Q48-F34-R18, Q51-F25-R23 and Q76-F7-R17, and classify as lithic arkose, lithic arkose-feldspathic litharenite, and sublitharenite, respectively. Detritus of all the sandstones suggest acid igneous rock source, with minor sedimentary and metamorphic imprints, with an order of maturity as Banket>Kawere>Huni>Chagupana. Detritus in the Chagupana, Huni and Kawere sandstones are from the transitional continental margin. The Chagupana is from the cold arid climate, while the Huni and Kawere are from the semi-arid/semi-humid climates. The Banket sandstone mobilises from craton interior with recycled orogenic materials in a humid environment. The angular-subangular feldspars in Chagupana sandstone indicate low relief and low-moderate recycling close to the source. Huni, Kawere and Banket sandstones derive from low-moderate reliefs with multiple recycling episodes. The Chagupana and Huni sandstones show paleo-current directions from the north and east, respectively. Similarities between the Chagupana and Tarkwa rocks can only be limited to the tectonic setting and not from source area, paleo-climate, paleo-current and relief.


2021 ◽  
pp. 1-18
Author(s):  
Qing Ma ◽  
Yaoqi Zhou ◽  
Hongyu Mu ◽  
Tengfei Zhou ◽  
Hanjie Zhao ◽  
...  

Abstract Lower Cretaceous sedimentary rocks of Lingshan Island, located along the continental margin of East Asia, have received increased attention. The Lingke-1 core mainly belongs to the Lower Cretaceous Laiyang Group. We investigate provenance, tectonic setting, palaeoclimate and palaeoredox conditions in the study area using elemental geochemistry, thereby elucidating the depositional history of the Lower Cretaceous sediments and reconstructing the palaeo-environment. To achieve this, 90 siltstones and 76 mudstones were sampled from this core and other outcrops on Lingshan Island. The chemical index of alternation (CIA) values for the majority of the samples and the bivariate diagrams indicate that the sedimentary rocks were subjected to minor weathering processes. Geochemical results suggest that source rocks for the region are felsic igneous and metamorphic rocks, along with minor proportions of intermediate igneous rocks. Major- and trace-element discrimination diagrams, deciphering the tectonic history, indicate that source rocks mainly originated from the continental island-arc and active continental margin. Several representative geochemical indices and the bivariate plots based on elemental contents show that the Laiyang Group was predominantly deposited in arid conditions. Sr/Ba values suggest a palaeosalinity transition from brackish to saline, demonstrating a depositional transformation from lacustrine facies for the lower Laiyang Group to marine facies in the upper Laiyang Group. U/Th and V/(V+Ni) ratios and Ce anomalies in the rocks indicate anoxic conditions. We conclude that the conspicuous decline in the trends of the above three geochemical indices, ranging between 400 and 800 m, may be related to the latest Hauterivian oceanic anoxic event.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 557
Author(s):  
Byung-Choon Lee ◽  
Weon-Seo Kee ◽  
Uk-Hwan Byun ◽  
Sung-Won Kim

In this study, petrological, structural, geochemical, and geochronological analyses of the Statherian alkali feldspar granite and porphyritic alkali feldspar granite in the southwestern part of the Korean Peninsula were conducted to examine petrogenesis of the granitoids and their tectonic setting. Zircon U-Pb dating revealed that the two granites formed around 1.71 Ga and 1.70–1.68 Ga, respectively. The results of the geochemical analyses showed that both of the granites have a high content of K2O, Nb, Ta, and Y, as well as high FeOt/MgO and Ga/Al ratios. Both granites have alkali-calcic characteristics with a ferroan composition, indicating an A-type affinity. Zircon Lu-Hf isotopic compositions yielded negative εHf(t) values (−3.5 to −10.6), indicating a derivation from ancient crustal materials. Both granite types underwent ductile deformation and exhibited a dextral sense of shear with a minor extension component. Based on field relationships and zircon U-Pb dating, it was considered that the deformation event postdated the emplacement of the alkali feldspar granite and terminated soon after the emplacement of the porphyritic alkali feldspar granite in an extensional setting. These data indicated that there were extension-related magmatic activities accompanying ductile deformation in the southwestern part of the Korean Peninsula during 1.71–1.68 Ga. The Statherian extension-related events are well correlated with those in the midwestern part of the Korean and eastern parts of the North China Craton.


2021 ◽  
pp. 1-20
Author(s):  
Xiao-Fei Qiu ◽  
Qiong Xu ◽  
Tuo Jiang ◽  
Shan-Song Lu ◽  
Long Zhao

Abstract The South Qinling block, a segment of the Yangtze craton involved in the Qinling–Dabie orogen, is critical for understanding the tectonic evolution of eastern China. However, the tectonic setting of the South Qinling block and the northern margin of the Yangtze block during middle Neoproterozoic time has long been the subject of debate, with two distinctly different models (continental rift or volcanic arc) proposed. Here, a comprehensive study of zircon U–Pb geochronology and geochemistry has been carried out on the Chengwan granitic pluton from the Suizao terrane in the South Qinling block. The granites are monzogranite and syenogranite in lithology, and are mainly composed of potash feldspar, quartz, plagioclase and biotite. This suite has long been regarded as a Palaeozoic magmatic pluton, but zircon U–Pb ages of 809 ± 9 Ma and 816 ± 4 Ma are obtained in this study. The granites are metaluminous to strongly peraluminous with high alkali contents, and exhibit highly fractionated features, including high SiO2, low Zr/Hf ratios, rare earth element tetrad effects and enrichment of K and Rb. They show Hf–Nd isotopic decoupling, which may be genetically related to their petrogenetic process. Based on the geochemical features and the positive εHf(t) values of the zircons, it is indicated that the granites may have been derived from partial melting of juvenile tonalitic rocks by biotite breakdown under fluid-absent conditions. The Chengwan granite geochemically belongs to the A2-subtype granites, suggesting that it might have formed in a post-orogenic tectonic setting. The highly fractionated A-type granite in this study may represent extensional collapse shortly after the collisional events in the South Qinling block, and thus indicate a tectonic regime switch, from compression to extension, as early as middle Neoproterozoic time. Integrating our new data with documented magmatic, metamorphic and sedimentary events during middle Neoproterozoic time in the region may support a continental rift model, and argues against arc models.


Sign in / Sign up

Export Citation Format

Share Document