Monitoring the Tetraethyl Orthosilicate (TEOS)-Based Sol–Gel Process with Cu(II) Ions as a Spin Probe

2015 ◽  
Vol 47 (1) ◽  
pp. 1-12 ◽  
Author(s):  
M. Mazúr ◽  
L. Husáriková ◽  
M. Valko ◽  
C. J. Rhodes
2010 ◽  
Vol 113-116 ◽  
pp. 2266-2270
Author(s):  
Jing Li ◽  
Wei Xue ◽  
Yong Zhao ◽  
Zhi Miao Wang

A novel method of microemulsion coupling with sol–gel process was used for preparation of porous silica using tetraethyl orthosilicate as silicon source. Effect of solvent and catalyst on the surface texture properties was investigated respectively. The results showed that porous silica with large specific surface area (738.65 m2/g) and high pore volume (2.01 cm3/g) was obtained. However, the mesopores in silica were arranged in disorder and showed great ununiformity in shape and arrangement. To obtain porous silica with desired texture properties, an appropriate dosage of ethanol and higher HCl concentration were needed.


2019 ◽  
Vol 280 ◽  
pp. 03010 ◽  
Author(s):  
Dwi Rasy Mujiyanti ◽  
Muthia Elma ◽  
Mufidah Amalia

Interlayer-free glucose carbonized template silica membranesbased on tetraethyl orthosilicate (TEOS) and glucose were successfullyprepared using an acid-base catalysed sol-gel method for artificial brinewater desalination (7.5% wt NaCl solution %) at temperatures range from25, 40 and 60 °C. These membranes calcined at 250 and 400 °C. Themembranes were fabricated through sol-gel process by using TEOS(tetraethyl orthosilicate); ethanol; nitric acid; ammonia; aquadest andglucose as a template. By molar ratio is 1: 38: 0.0007: 0.0003: 5 and0.25%; 0.5%, 1% w/v glucose as template. The results show the highestwater fluxes of 1.8, 2.2 and 4.8 kg m−2 h−1 for 25, 40 and 60 °Cdesalination process with excellent salt rejections of 99.5, 99.5 and 99.7%, respectively. It was found that the higher the NaCl solution temperature asfeed solution as well as glucose concentration (0.25% to 1% wt) astemplate attached in the silica matrixes, the higher water fluxes eventhough the salt rejection remain the same. This study demonstrates that theorganosilica membranes offered the carbonized silica mesostructuremembranes with excellent separation of water from the hydrated salt ions, particularly for processing brine salt solutions.


2011 ◽  
Vol 399-401 ◽  
pp. 390-393
Author(s):  
Ai Huan Gao ◽  
Pi Hui Pi ◽  
Jiang Cheng ◽  
Zhuo Ru Yang

Aluminum sheet was encapsulated by inorganic-organic hybrid film through a base catalyzed sol-gel method using organic acrylate silane resin PMBV and TEOS as precursors. FTIR and AFM characterizations prove that PMBV and TEOS have hydrolyzed and co-condensed with each other in the sol-gel process to form an uniform film on the surface of aluminum sheet. XPS result shows hydroxyl groups on aluminum surface have taken part in the co-condensation reaction.


2020 ◽  
Vol 21 (22) ◽  
pp. 8552
Author(s):  
Vanessa Poscher ◽  
George S. Pappas ◽  
Oliver Brüggemann ◽  
Ian Teasdale ◽  
Yolanda Salinas

Porous organosilica microparticles consisting of silane-derived cyclophosphazene bridges were synthesized by a surfactant-mediated sol-gel process. Starting from the substitution of hexachlorocyclotriphosphazene with allylamine, two different precursors were obtained by anchoring three or six alkoxysilane units, via a thiol-ene photoaddition reaction. In both cases, spherical, microparticles (size average of ca. 1000 nm) with large pores were obtained, confirmed by both, scanning and transmission electron microscopy. Particles synthesized using the partially functionalized precursor containing free vinyl groups were further functionalized with a thiol-containing molecule. While most other reported mesoporous organosilica particles are essentially hybrids with tetraethyl orthosilicate (TEOS), a unique feature of these particles is that structural control is achieved by exclusively using organosilane precursors. This allows an increase in the proportion of the co-components and could springboard these novel phosphorus-containing organosilica microparticles for different areas of technology.


2006 ◽  
Vol 6 (11) ◽  
pp. 3555-3558 ◽  
Author(s):  
Seongmin Ju ◽  
Viet Linh Nguyen ◽  
Pramod R. Watekar ◽  
Bok Hyeon Kim ◽  
Chaehwan Jeong ◽  
...  

Optical fibers containing gold metal nanoparticles were developed by modified chemical vapor deposition, in which Au(OH)3 and tetraethyl-orthosilicate (TEOS) was used via sol–gel process to incorporate gold metals by providing the reduction atmosphere. The absorption peak appeared near 490 nm was found to be due to the surface plasmon resonance of the gold nanoparticles incorporated in the fiber core.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1128 ◽  
Author(s):  
Nguyen-Phuong-Dung Tran ◽  
Ming-Chien Yang

In this study, silicone nanoparticles (SiNPs) were prepared from polydimethylsiloxane (PDMS) and tetraethyl orthosilicate (TEOS) via the sol-gel process. The resultant SiNPs were characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), and scanning electron microscope (SEM). These SiNPs were then blended with 2-hydroxyethylmethacrylate (HEMA) and 1-vinyl-2-pyrrolidinone (NVP) before polymerizing into hydrogel contact lenses. All hydrogels were subject to characterization, including equilibrium water content (EWC), contact angle, and oxygen permeability (Dk). The average diameter of SiNPs was 330 nm. The results indicated that, with the increase of SiNPs content, the oxygen permeability increased, while the EWC was affected insignificantly. The maximum oxygen permeability attained was 71 barrer for HEMA-NVP lens containing 1.2 wt% of SiNPs with an EWC of 73%. These results demonstrate that by loading a small amount of SiNPs, the Dk of conventional hydrogel lenses can be improved greatly. This approach would be a new method to produce oxygen-permeable contact lenses.


2015 ◽  
Vol 15 (2) ◽  
pp. 108-115 ◽  
Author(s):  
Sri Hastuti ◽  
Nuryono Nuryono ◽  
Agus Kuncaka

In this research, L-arginine-modified silica (SiO2-Arg) with 3-glycidoxypropyl-trimethoxysilane (GPTMS) as the linking agent has been synthesized through sol gel process for adsorption of Au(III) in aqueous solution. Tetraethyl orthosilicate (TEOS) as the silica source precursor, L-arginine solution 0.9 M with various volume ratios and the linking agent were mixed together to form a gel. SiO2-Arg was characterized using Fourier transform infrared (FTIR) spectrophotometer, thermogravimetric analysis (TGA), and an elemental analysis. Adsorption was carried out in a batch system under various experimental conditions including contact time and initial concentration of metal Au(III). The selectivity of adsorbent toward Au(III) was examined in the presence of Cu(II), Fe(III), and Zn(II) ion at various pHs. Results of characterization showed that silica has been successfully modified with L-arginine. The optimum adsorption of Au(III) on SiO2-Arg was obtained at pH of 3.0 and the adsorption isotherm of Au(III) on SiO2-Arg gives the adsorption capacity of 52.79 mg/g. The kinetic study demonstrates that the adsorption of Au(III) ion follows pseudo-second order with the rate constant of 53197 g mol–1 min–1. The selectivity order of Au-Zn = Au-Cu > Au-Fe. This sol-gel preparation is simple and provides prospective application of SiO2-Arg material as an effective adsorbent for metal ions particularly gold(III).


Sign in / Sign up

Export Citation Format

Share Document