Research of Aluminum Sheet Encapsulated by Organic Silane Acrylate Resin and Tetraethyl Orthosilicate

2011 ◽  
Vol 399-401 ◽  
pp. 390-393
Author(s):  
Ai Huan Gao ◽  
Pi Hui Pi ◽  
Jiang Cheng ◽  
Zhuo Ru Yang

Aluminum sheet was encapsulated by inorganic-organic hybrid film through a base catalyzed sol-gel method using organic acrylate silane resin PMBV and TEOS as precursors. FTIR and AFM characterizations prove that PMBV and TEOS have hydrolyzed and co-condensed with each other in the sol-gel process to form an uniform film on the surface of aluminum sheet. XPS result shows hydroxyl groups on aluminum surface have taken part in the co-condensation reaction.

2015 ◽  
Vol 47 (1) ◽  
pp. 1-12 ◽  
Author(s):  
M. Mazúr ◽  
L. Husáriková ◽  
M. Valko ◽  
C. J. Rhodes

2010 ◽  
Vol 113-116 ◽  
pp. 2266-2270
Author(s):  
Jing Li ◽  
Wei Xue ◽  
Yong Zhao ◽  
Zhi Miao Wang

A novel method of microemulsion coupling with sol–gel process was used for preparation of porous silica using tetraethyl orthosilicate as silicon source. Effect of solvent and catalyst on the surface texture properties was investigated respectively. The results showed that porous silica with large specific surface area (738.65 m2/g) and high pore volume (2.01 cm3/g) was obtained. However, the mesopores in silica were arranged in disorder and showed great ununiformity in shape and arrangement. To obtain porous silica with desired texture properties, an appropriate dosage of ethanol and higher HCl concentration were needed.


2019 ◽  
Vol 280 ◽  
pp. 03010 ◽  
Author(s):  
Dwi Rasy Mujiyanti ◽  
Muthia Elma ◽  
Mufidah Amalia

Interlayer-free glucose carbonized template silica membranesbased on tetraethyl orthosilicate (TEOS) and glucose were successfullyprepared using an acid-base catalysed sol-gel method for artificial brinewater desalination (7.5% wt NaCl solution %) at temperatures range from25, 40 and 60 °C. These membranes calcined at 250 and 400 °C. Themembranes were fabricated through sol-gel process by using TEOS(tetraethyl orthosilicate); ethanol; nitric acid; ammonia; aquadest andglucose as a template. By molar ratio is 1: 38: 0.0007: 0.0003: 5 and0.25%; 0.5%, 1% w/v glucose as template. The results show the highestwater fluxes of 1.8, 2.2 and 4.8 kg m−2 h−1 for 25, 40 and 60 °Cdesalination process with excellent salt rejections of 99.5, 99.5 and 99.7%, respectively. It was found that the higher the NaCl solution temperature asfeed solution as well as glucose concentration (0.25% to 1% wt) astemplate attached in the silica matrixes, the higher water fluxes eventhough the salt rejection remain the same. This study demonstrates that theorganosilica membranes offered the carbonized silica mesostructuremembranes with excellent separation of water from the hydrated salt ions, particularly for processing brine salt solutions.


2011 ◽  
Vol 89 (3) ◽  
pp. 280-288 ◽  
Author(s):  
Sadok Letaief ◽  
Yun Liu ◽  
Christian Detellier

An inorganic nanocomposite made of zirconia nanoparticles coated on the external surfaces of the fibrous clay mineral sepiolite was prepared by using the sol–gel process under soft conditions using zirconium(IV) propoxide in 1-propanol as the precursor. The resulting materials were characterized by X-ray diffraction (XRD), thermal gravimetric analyses (TGA) and differential thermal analyses (DTA), microporosimetry, 29Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR), and high-resolution transmission electron microscopy (HR-TEM). The organic material from the precursor was fully removed after calcination at 450 °C, concurrently with the crystallization of the cubic phase of zirconium oxide. The coordinated water molecules of sepiolite were fully removed and its symmetrical layered structure was folded after calcination at 650 °C, as observed by XRD and 29Si cross-polarization (CP) / MAS NMR. The arrangement of the nanoparticles of zirconium oxide on the sepiolite external surfaces maintains a fibrous morphology for the nanocomposite. This material was applied as a catalyst for the Knoevenagel condensation reaction of benzaldehyde and malononitrile under solvent-free conditions. Strongly improved yields of reaction, attributed to larger catalytically active surfaces, were obtained compared with either the sepiolite clay mineral or the zirconium oxide tested individually.


2007 ◽  
Vol 336-338 ◽  
pp. 552-554
Author(s):  
Xiao Nan Mei ◽  
Hai Yao Lin ◽  
Yuan Jing Cui ◽  
Ping Lv ◽  
Guo Dong Qian

In order to achieve a large hyperpolarizability (β) value and thermal stability, a novel Y-type silicon precursor ICTES-DBPNPI was synthesized. By the sol-gel process, the new organic-inorganic materials having organic chromophore were prepared.


1992 ◽  
Vol 7 (8) ◽  
pp. 2273-2280 ◽  
Author(s):  
Hyun M. Jang ◽  
Kwang S. Kim ◽  
Chang J. Jung

Two different chemical processing routes were successfully used for the fabrication of lithium aluminosilicate (LAS) specimens having dense and homogeneous microstructure with an essentially pore-free state. These are (i) sol-gel route using the hydrolysis-condensation reaction of metal alkoxides and (ii) mixed colloidal processing route. Lowering Li content in the sol-gel-derived LAS significantly enhanced densification and retarded the crystallization. The β-spodumene (∼0.8 μm) seeding in the sol-gel-derived LAS modified the sequence of phase transformations and lowered the crystallization temperature by 120 °C. Therefore, combining the epitaxial seeding with the sol-gel process, one can bring down the crystallization temperature to the sintering temperature range (∼800 °C). Similarly, the LAS gel prepared by the mixed colloidal processing route exhibited a noticeable shrinkage over a broad temperature range (600–950 °C) and produced a dense sintered body with an essentially pore-free microstructure.


1990 ◽  
Vol 119 (2) ◽  
pp. 132-135 ◽  
Author(s):  
Shinzo Kohjiya ◽  
Kenichiro Ochiai ◽  
Shinzo Yamashita

2008 ◽  
Vol 23 (8) ◽  
pp. 2053-2060 ◽  
Author(s):  
S. Smitha ◽  
P. Shajesh ◽  
P. Mukundan ◽  
K.G.K. Warrier

A new organic–inorganic hybrid synthesized through a sol-gel process starting from alkoxysilane and chitosan is reported. Functionalization of the hybrid was effected through in situ hydrolysis–condensation reaction of methyltrimethoxysilane (MTMS) and vinyltrimethoxysilane (VTMS) in the reaction medium. The process yields highly transparent and hydrophobic silica–chitosan hybrids. The hybrid gel was investigated with respect to chemical modification, thermal degradation, hydrophobicity, and transparency under the ultraviolet-visible region. The extent of hydrophobicity had been tailored by varying the precursor ratio. SiO2–chitosan–MTMS hybrids showed a higher thermal stability than SiO2–chitosan–VTMS (SCV) hybrids with respect to hydrophobicity. Condensation of silsesquioxanes generated from the hydrolysis of MTMS and VTMS over the silica-chitosan particles impart hydrophobicity to the hybrid. The coatings of functionalized SiO2–chitosan precursor sol on glass substrates showed nearly 100% optical transmittance in the visible region. The present hybrid material may find application in optics and other industries.


Sign in / Sign up

Export Citation Format

Share Document