Nitrative and oxidative modifications of enolase are associated with iron in iron-overload rats and in vitro

2010 ◽  
Vol 16 (3) ◽  
pp. 481-490 ◽  
Author(s):  
Naihao Lu ◽  
Xueli Li ◽  
Jinyang Li ◽  
Wenjing Xu ◽  
Hailing Li ◽  
...  
Hemoglobin ◽  
1988 ◽  
Vol 12 (5-6) ◽  
pp. 593-600 ◽  
Author(s):  
E. R. Huehns ◽  
J. B. Porter ◽  
R. C. Hider

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3775-3775
Author(s):  
Belkis Atasever ◽  
Serap Erdem Kuruca ◽  
Zeynep Karakas ◽  
Leyla Agaoglu

Abstract Immunological disturbances have been reported in thalassemia and the possibility has been raised that these may be consequences of blood transfusion and iron overload. These disturbances are augmentation of the number of supressor T cells (CD8), decreased number and activity of helper T cells (CD4) and impaired activity of NK (natural killer) cells. Iron overload causes toxic tissue changes through the release of free radicals and induces oxidative stress. According to Fenton and Haber-Weiss reactions, iron plays a catalytic role occuring hydroxyl radicals (OH*) which are very reactive free radicals. Antioxidants, like vitamin E, vitamin C and selenium, may modulate oxidative damage. In the present study; firstly, normal lymphocytes mitogen responses and NK activity were investigated by colorimetric MTT test in 26 thalassemia patients and 10 healthy volunteers as control. Secondly, lymphocytes were incubated with vitamin E ( 150, 50, 15 mg/ml), vitamin C (200, 100, 20mg/ml) and selenium (10−5, 10−6, 10−7 M). Finally, lymphocytes mitogen responses and NK activity are investigated. The results were statistically analyzed comparing with controls and healthy volunteers. It was found decreased NK activity of thalassemia patients in comparison with healthy volunteers. The concentration of 10−7 M of selenium enhanced NK activity at the E:T (effector/target) ratio of 50:1 The concentration of 200 mg/ml of vitamin C enhanced NK activity at the E:T ratio of 10:1, 25:1 and 50:1. However, vitamin E decreased NK activity of both thalassemia patients and healhty volunteers. The concentration of 50 mg/ml vitamin E decreased NK activity at the E:T ratio of 5:1 in thalassemia patients and the concentration of 15 mg/ml of vitamin E decreased NK activity at the E:T ratio of 5:1 in healhty volunteers. It was not found any differences between thalassemia patients and healthy volunteers in lymphocytes mitogen responses. The concentration of 200 mg/ml of vitamin C decreased lymphocytes mitogen response against PHA. In conclusion, we suggest that vitamin C and selenium supplementation are required in patients with thalassemia for augmentation of NK cell activity.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 706-706
Author(s):  
Domenico Girelli ◽  
Ivana De Domenico ◽  
Claudia Bozzini ◽  
Ilaria Tenuti ◽  
Nadia Soriani ◽  
...  

Abstract Background: Mutations in the iron exporter Ferroportin (Fpn) lead to type IV hemochromatosis (Ferroportin Disease, FD), a dominantly inherited disorder with heterogeneous clinical and biochemical patterns. Some patients present with predominant macrophage iron overload (M), marked elevation of serum ferritin, normal-to-low transferrin saturation (TS), and, possibly, iron restricted erythropoiesis. Others present with a phenotype resembling classical HFE-related hemochromatosis, i.e. characterized by high TS and predominant hepatocyte iron overload (H). These differences are thought to reflect heterogeneity in the functional behaviour of Fpn mutant proteins. Methods: Two unrelated probands referring to the Centre for Iron Overload Disorders in Verona because of non-HFE hemochromatosis were screened for Fpn mutations by DHPLC (Cremonesi L, Br J Haematol 2005). The functional behaviour of mutants Fpn was studied by generating Fpn-GFP constructs transfected into different cell types (HEK293T, Cos7, and mouse bone marrow macrophages), and analyzing their cellular localization, as well as their capabilities to bind hepcidin and export iron (De Domenico I, PNAS 2005). The two mutations were also expressed in zebrafish, to evaluate their impact on iron-dependent erythropoiesis. Results: Patient 1, a 59 year old male, had clinical, biochemical (TS 74.8%, ferritin 9,000 μg/l), and pathological features (marked iron overload in either macrophages and hepatocytes, absence of overt cirrhosis) somewhat ambiguous, possibly suggesting a type M Fpn variant with late secondary hepatocyte overload. He was found to be heterozygous for the new L233P mutation. Functional studies revealed that Fpn L233P does not appropriately traffic to the cell surface, resulting in inappropriate inhibition by hepcidin. Fpn L233P expression in vivo in zebrafish resulted in iron limited erythropoiesis, consistent with a type M mutation leading to macrophage iron retention. Patient 2, a 59 year old female, had features more clearly suggesting a type M Fpn variant (TS 22.7%, ferritin 1,771 μg/l, macrophage iron load), but tolerated very well phlebotomies without developing signs of anemia. She was found to be heterozygous for the new I152F mutation. Functional studies revealed a unique pattern (never observed until now), since Fpn I152F localized appropriately on cell membrane, bound near normally to hepcidin, but showed a “primary” deficit of iron export capability. I152F expression in zebrafish resulted in a trend towards iron limited erythropoiesis, though quantitatively less clear than L223P. Conclusions: FD is a heterogeneous disease caused by generally “private” mutations in Fpn. The clinical, biochemical, and pathological features vary depending on the different behaviour of mutant Fpn. In vitro and in vivo molecular expression studies are very useful to clarify the pathophysiogical spectrum of this disease.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Kamal Shemisa ◽  
Nasima Jafferjee ◽  
David Thomas ◽  
Gretta Jacobs ◽  
Howard J. Meyerson

A 34-year-old female with sickle cell anemia (hemoglobin SS disease) and severe iron overload presented to our institution with the subacute presentation of recurrent pain crisis, fever of unknown origin, pancytopenia, and weight loss. A CT scan demonstrated both lung and liver nodules concerning for granulomatous disease. Subsequent biopsies of the liver and bone marrow confirmed the presence of noncaseating granulomas and blood cultures isolatedMycobacterium aviumcomplex MAC. Disseminated MAC is considered an opportunistic infection typically diagnosed in the immunocompromised and rarely in immunocompetent patients. An appreciable number of mycobacterial infection cases have been reported in sickle cell disease patients without immune dysfunction. It has been reported that iron overload is known to increase the risk for mycobacterial infection in vitro and in vivo studies. While iron overload is primarily known to cause end organ dysfunction, the clinical relationship with sickle cell disease and disseminated MAC infection has not been reported. Clinical iron overload is a common condition diagnosed in the sub-Saharan African population. High dietary iron, genetic defects in iron trafficking, as well as hemoglobinopathy are believed to be the etiologies for iron overload in this region. Patients with iron overload in this region were 17-fold more likely to die fromMycobacterium tuberculosis. Both experimental and clinical evidence suggest a possible link to iron overload and mycobacterial infections; however larger observational studies are necessary to determine true causality.


2013 ◽  
Vol 34 (suppl 1) ◽  
pp. P1202-P1202
Author(s):  
C. Guenancia ◽  
N. Li ◽  
E. Rigal ◽  
A. Habbout ◽  
Y. Cottin ◽  
...  
Keyword(s):  

Stroke ◽  
2011 ◽  
Vol 42 (12) ◽  
pp. 3587-3593 ◽  
Author(s):  
Fan Zhao ◽  
Ya Hua ◽  
Yangdong He ◽  
Richard F. Keep ◽  
Guohua Xi

Background and Purpose— Brain iron overload plays a detrimental role in brain injury after intracerebral hemorrhage (ICH). A recent study found that minocycline acts as an iron chelator and reduces iron-induced neuronal death in vitro. The present study investigated if minocycline reduces iron overload after ICH and iron-induced brain injury in vivo. Methods— This study was divided into 4 parts: (1) rats with different sizes of ICH were euthanized 3 days later for serum total iron and brain edema determination; (2) rats had an ICH treated with minocycline or vehicle. Serum iron, brain iron, and brain iron handling proteins were measured; (3) rats had an intracaudate injection of saline, iron, iron+minocycline, or iron+macrophage/microglia inhibitory factor and were used for brain edema and neuronal death measurements; and (4) rats had an intracaudate injection of iron and were treated with minocycline. The brains were used for edema measurement. Results— After ICH, serum total iron and brain nonheme iron increased and these changes were reduced by minocycline treatment. Minocycline also reduced ICH-induced upregulation of brain iron handling proteins and neuronal death. Intracaudate injection of iron caused brain edema, blood–brain barrier leakage, and brain cell death, all of which were significantly reduced by coinjection with minocycline. Conclusions— The current study found that minocycline reduces iron overload after ICH and iron-induced brain injury. It is also well known minocycline is an inhibitor of microglial activation. Minocycline may be very useful for patients with ICH because both iron accumulation and microglia activation contribute to brain damage after ICH.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3631-3631
Author(s):  
Sarah Lane ◽  
Farzam Viand ◽  
Kayla Bolduc ◽  
Juergen Ehlting ◽  
Patrick B Walter

Abstract Introduction: The use of iron-chelators is an important clinical treatment for iron overload diseases such as β-Thalassemia (Thal) and neurodegeneration with brain iron accumulation. Iron overload can impair immune cell, cardiac and neurological function. Iron chelation can alleviate some of this morbidity, but at increasing doses certain chelating agents can have serious side effects. Plant-based treatments may offer an alternative. In plants, Fe is required for photosynthesis and enzyme production but is often limited for uptake from the soil. When Fe is limited, plant roots may produce a range of compounds, including chelators, to assist in solubilizing Fe precipitates. Plant-produced phenolic acids such as p-coumaric acid (Cou), caffeic acid (Caf), or chlorogenic acid (CGA) have shown an affinity for Fe and may play a role in plant iron uptake. Plants adapted to environments where Fe is more difficult to access, such as alkaline soils, could show a higher prevalence of these compounds, along with plants generally abundant in phenolics. In this project, the alkaline tolerant plants Thuja plicata (cedar) and Lavandula x intermedia (lavender), along with the phenolic rich Populus trichocarpa x deltoides(Poplar), were investigated for their potential to produce Fe-chelators in response to low Fe. Methods: Cedar, lavender, and poplar cuttings were clonally propagated and cultivated aeroponically to improve efficiency of root collection. Extracts or exudates from roots grown with or without Fe were isolated for characterization as Fe-chelators. Phenolics from root washings were captured with chromatography and separated by collection into fractions in different solvents. These were evaluated for total phenolic concentration against gallic acid as a standard. An in vitro competition assay was used to characterize Fe-binding ability of root isolates. Isolates were compared to standard chelators DFO and EDTA, and model compounds Cou, Caf, and CGA to determine inhibition of the competition reaction. A bioassay quantified intracellular Fe in monocytic THP-1 cells (to model RE system) grown for 8 weeks with chronic relevant non-transferrin bound iron levels (4-20 μM Fe-citrate, CrFe) and without (Con). Cultures were also investigated for other effects of acute Fe treatment and potential chelators over time. Results: Aeroponic plant cultivation improved root health and growth compared to previous hydroponic methods. Fe-deficient plants produced isolates that were different from Fe-normal plants following an analysis of phenolic fractions. Isolates in isopropanol were found to be 104% more plentiful in Fe-deficient poplars, which may indicate Fe-chelating potential. Between species, lavender had the highest phenolic concentration in root isolates, followed by cedar and poplar. Cedar roots showed an increased composition of phenolics compared to Fe-deficient poplar, supporting the potential for species-specific Fe responses. Analysis of Fe responses between species is ongoing. Competition assays showed that lavender root isolates exhibited 36% greater inhibition than 80 μM EDTA and 46% greater than 100 μM DFO. In direct comparison to DFO at 50 μM, Caf was equivalent, CGA had 30% greater inhibition, and inhibition by Cou was 41% lower. CrFe cells had 104% greater intracellular Fe compared to Con cells. Addition of acute Fe over 24 h significantly increased Fe content of cells grown in both CrFe and Con conditions and altered cell viability. A dose-dependent reduction in Fe levels was seen with increasing CGA in both CrFe and Con cells. Overall, Fe in samples treated with CGA were comparable to those with DFO. The effect of plant root isolates on intracellular Fe and cell viability is ongoing. Conclusion: Plant species from different soil types have altered responses to Fe-deficiency. Lavender and cedar, more tolerant of unfavorable soils, may produce more Fe-chelating phenolics as part of their response to low Fe. This was observed in vitro, as lavender isolates contain chelators that stimulate inhibition of the competition reaction similarly to DFO and EDTA at moderate concentrations. As a model, Caf, CGA and Cou also prove to have Fe-chelating activity comparable to DFO at lower concentrations. After using these plant compounds in bioassays, their successful reduction of intracellular Fe in CrFe THP-1 cells show the promise of plant root isolates to be clinically useful Fe-chelators. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Qing Tian ◽  
Bo Qin ◽  
Yufan Gu ◽  
Lijun Zhou ◽  
Songfeng Chen ◽  
...  

Excess iron has been reported to lead to osteoblastic cell damage, which is a crucial pathogenesis of iron overload-related osteoporosis. However, the cytotoxic mechanisms have not been fully documented. In the present study, we focused on whether necroptosis contributes to iron overload-induced osteoblastic cell death and related underlying mechanisms. Here, we showed that the cytotoxicity of iron overload in osteoblastic cells was mainly due to necrosis, as evidenced by the Hoechst 33258/PI staining, Annexin-V/PI staining, and transmission electronic microscopy. Furthermore, we revealed that iron overload-induced osteoblastic necrosis might be mediated via the RIPK1/RIPK3/MLKL necroptotic pathway. In addition, we also found that iron overload was able to trigger mitochondrial permeability transition pore (mPTP) opening, which is a critical downstream event in the execution of necroptosis. The key finding of our experiment was that iron overload-induced necroptotic cell death might depend on reactive oxygen species (ROS) generation, as N-acetylcysteine effectively rescued mPTP opening and necroptotic cell death. ROS induced by iron overload promote necroptosis via a positive feedback mechanism, as on the one hand N-acetylcysteine attenuates the upregulation of RIPK1 and RIPK3 and phosphorylation of RIPK1, RIPK3, and MLKL and on the other hand Nec-1, siRIPK1, or siRIPK3 reduced ROS generation. In summary, iron overload induced necroptosis of osteoblastic cells in vitro, which is mediated, at least in part, through the RIPK1/RIPK3/MLKL pathway. We also highlight the critical role of ROS in the regulation of iron overload-induced necroptosis in osteoblastic cells.


1997 ◽  
Vol 23 (1) ◽  
pp. 82-89 ◽  
Author(s):  
Chao-Yuh Yang ◽  
Zi-Wei Gu ◽  
Hui-Xin Yang ◽  
Manlan Yang ◽  
Antonio M Gotto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document