Projected Tree Species Redistribution Under Climate Change: Implications for Ecosystem Vulnerability Across Protected Areas in the Eastern United States

Ecosystems ◽  
2014 ◽  
Vol 18 (2) ◽  
pp. 202-220 ◽  
Author(s):  
Scott G. Zolkos ◽  
Patrick Jantz ◽  
Tina Cormier ◽  
Louis R. Iverson ◽  
Daniel W. McKenney ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 989 ◽  
Author(s):  
Louis R. Iverson ◽  
Anantha M. Prasad ◽  
Matthew P. Peters ◽  
Stephen N. Matthews

We modeled and combined outputs for 125 tree species for the eastern United States, using habitat suitability and colonization potential models along with an evaluation of adaptation traits. These outputs allowed, for the first time, the compilation of tree species’ current and future potential for each unit of 55 national forests and grasslands and 469 1 × 1 degree grids across the eastern United States. A habitat suitability model, a migration simulation model, and an assessment based on biological and disturbance factors were used with United States Forest Service Forest Inventory and Analysis data to evaluate species potential to migrate or infill naturally into suitable habitats over the next 100 years. We describe a suite of variables, by species, for each unique geographic unit, packaged as summary tables describing current abundance, potential future change in suitable habitat, adaptability, and capability to cope with the changing climate, and colonization likelihood over 100 years. This resulting synthesis and summation effort, culminating over two decades of work, provides a detailed data set that incorporates habitat quality, land cover, and dispersal potential, spatially constrained, for nearly all the tree species of the eastern United States. These tables and maps provide an estimate of potential species trends out 100 years, intended to deliver managers and publics with practical tools to reduce the vast set of decisions before them as they proactively manage tree species in the face of climate change.



2004 ◽  
Vol 13 (3) ◽  
pp. 209-219 ◽  
Author(s):  
Louis R. Iverson ◽  
M. W. Schwartz ◽  
Anantha M. Prasad


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 302 ◽  
Author(s):  
Louis Iverson ◽  
Matthew Peters ◽  
Anantha Prasad ◽  
Stephen Matthews

Forests across the globe are faced with a rapidly changing climate and an enhanced understanding of how these changing conditions may impact these vital resources is needed. Our approach is to use DISTRIB-II, an updated version of the Random Forest DISTRIB model, to model 125 tree species individually from the eastern United States to quantify potential current and future habitat responses under two Representative Concentration Pathways (RCP 8.5 -high emissions which is our current trajectory and RCP 4.5 -lower emissions by implementing energy conservation) and three climate models. Climate change could have large impacts on suitable habitat for tree species in the eastern United States, especially under a high emissions trajectory. On average, of the 125 species, approximately 88 species would gain and 26 species would lose at least 10% of their suitable habitat. The projected change in the center of gravity for each species distribution (i.e., mean center) between current and future habitat moves generally northeast, with 81 species habitat centers potentially moving over 100 km under RCP 8.5. Collectively, our results suggest that many species will experience less pressure in tracking their suitable habitats under a path of lower greenhouse gas emissions.







2020 ◽  
Vol 262 ◽  
pp. 114351 ◽  
Author(s):  
T.C. McDonnell ◽  
G.J. Reinds ◽  
G.W.W. Wamelink ◽  
P.W. Goedhart ◽  
M. Posch ◽  
...  


2016 ◽  
Author(s):  
Lu Shen ◽  
Loretta J. Mickley ◽  
Lee T. Murray

Abstract. We use a statistical model to investigate the effect of 2000–2050 climate change on fine particulate matter (PM2.5) air quality across the contiguous United States. By applying observed relationships of PM2.5 and meteorology to the IPCC Coupled Model Intercomparision Project Phase 5 (CMIP5) archives, we bypass many of the uncertainties inherent in chemistry-climate models. Our approach uses both the relationships between PM2.5 and local meteorology as well as the synoptic circulation patterns, defined as the Singular Value Decomposition (SVD) pattern of the spatial correlations between PM2.5 and meteorological variables in the surrounding region. Using an ensemble of 17 GCMs under the RCP4.5 scenario, we project an increase of ~ 1 μg m−3 in annual mean PM2.5 in the eastern US and a decrease of 0.3–1.2 μg m−3 in the Intermountain West by the 2050s, assuming present-day anthropogenic sources of PM2.5. Mean summertime PM2.5 increases as much as 2–3 μg m−3 in the eastern United States due to faster oxidation rates and greater mass of organic carbon from biogenic emissions. Mean wintertime PM2.5 decreases by 0.3–3 μg m−3 over most regions in United States, likely due to the volatilization of ammonium nitrate. Our approach provides an efficient method to calculate the climate penalty or benefit on air quality across a range of models and scenarios. We find that current atmospheric chemistry models may underestimate or even fail to capture the strongly positive sensitivity of monthly mean PM2.5 to temperature in the eastern United States in summer, and may underestimate future changes in PM2.5 in a warmer climate. In GEOS-Chem, the underestimate in monthly mean PM2.5-temperature relationship in the East in summer is likely caused by overly strong negative sensitivity of monthly mean low cloud fraction to temperature in the assimilated meteorology (~ −0.04 K−1), compared to the weak sensitivity implied by satellite observations (±0.01 K−1). The strong negative dependence of low cloud cover on temperature, in turn, causes the modeled rates of sulfate aqueous oxidation to diminish too rapidly as temperatures rise, leading to the underestimate of sulfate-temperature slopes, especially in the South. Our work underscores the importance of evaluating the sensitivity of PM2.5 to its key controlling meteorological variables in climate-chemistry models on multiple timescales before they are applied to project future air quality.





Sign in / Sign up

Export Citation Format

Share Document