Thirty-Year Repeat Measures of Mangrove Above- and Below-Ground Biomass Reveals Unexpectedly High Carbon Sequestration

Ecosystems ◽  
2019 ◽  
Vol 23 (2) ◽  
pp. 370-382 ◽  
Author(s):  
Karen Lamont ◽  
Neil Saintilan ◽  
Jeffrey J. Kelleway ◽  
Debashish Mazumder ◽  
Atun Zawadzki
2019 ◽  
Vol 15 (3) ◽  
pp. 20180799 ◽  
Author(s):  
Severino G. Salmo ◽  
Vanessa Malapit ◽  
Maria Carmela A. Garcia ◽  
Homer M. Pagkalinawan

We assessed the carbon stocks (CS) in mangroves that developed after a magnitude 7.1 earthquake in Silonay, Oriental Mindoro, south Luzon, The Philippines in November 1994. The earthquake resulted in a 50 cm uplift of sediment that provided new habitat within the upper intertidal zone which mangroves colonized (from less than 2 ha pre-earthquake to the current 45 ha, 23 years post-earthquake). The site provided an opportunity for a novel assessment of the rate of carbon sequestration in recently established mangroves. The carbon stock was measured in above-ground, below-ground and sediment compartments over a seaward to landward transect. Results showed a mean carbon stock of 549 ± 30 Mg C ha −1 (of which 13% was from the above-ground biomass, 5% from the below-ground biomass and 82% from the sediments). There was high carbon sequestration at a 40 cm depth that can be inferred attributable to the developed mangroves. The calculated rate of C sequestration (over 23 years post-earthquake) was 10.2 ± 0.7 Mg C ha −1 yr −1 and is comparable to rates reported from mangroves recovering from forest clearing. The rates we present here from newly developed mangroves contributes to calibrating estimates of total CS from restored mangroves (of different developmental stages) and in mangroves that are affected by disturbances.


2014 ◽  
Vol 2014 ◽  
pp. 1-13
Author(s):  
Deepa Dhital ◽  
Tomoharu Inoue ◽  
Hiroshi Koizumi

Carbon sequestration and carbon emission are processes of ecosystem carbon cycling that can be affected while land area converted to grassland resulting in increased soil carbon storage and below-ground respiration. Discerning the importance of carbon cycle in grassland, we aimed to estimate carbon sequestration in photosynthesis and carbon emission in respiration from soil, root, and microbes, for four consecutive years (2007–2010) in a warm-season perennial grassland, Japan. Soil carbon emission increased with increasing growing season temperature which ranged from 438 to 1642 mg CO2 m−2 h−1. Four years’ average soil carbon emission for growing season, nongrowing season, and annual emission was 1123, 364, and 1488 g C m−2, respectively. Nongrowing and snow covered season soil carbon emission contributed 23–25% and 14–17% to the annual emission. Above-ground biomass varied seasonally and variation in green biomass affected soil carbon emission with increasing temperature and precipitation. Temperature effect on root carbon emission contributed about 1/4th of the total soil carbon emission. Variation in soil and root carbon emission is affected by below-ground biomass. Long-term estimation concluded that seasonal and interannual variations in carbon sequestration and emission are very common in grassland ecosystem.


Author(s):  
A. M. Paul ◽  
C. C. Iheukwumere ◽  
C. U. Aguoru ◽  
T. Okoh ◽  
U. J. Alfred

Aims: The aim of this study is to estimate the total carbon sequested by some Woody plant Species in Makurdi zoological garden and its contribution to climate change. Study Design: Random sample plots of 100 m × 100 m were located in the field using a Garmin GPS and simple allometric procedures using standard carbon inventory principles and techniques that are based on data collection and analysis of carbon accumulating in the above-ground biomass, below-ground biomass, and soil carbon using verifiable modern methods were adopted. Place and Duration of Study: Field experiment was carried out at the Makurdi zoological garden, Benue State, Nigeria between September and October 2018. Methodology: The non-destructive method was used with the view to determine the above ground biomass (AGB), below ground biomass (BGB), Estimate the above ground carbon (AGC), below ground carbon (BGC), Total Carbon Content (TCC) and also to estimate the Above ground C02 and below ground C02 and the total C02 Sequestered in the study area. Results: A total number of 27 species of trees belonging to 16 different families were found in randomly selected sample plots. The diameter at breast height (DBH) was measured at 1.3 m from ground level with a good measuring tape while heights of plants were measured using haga altimeter. The result showed that a total of 3331.05 ton/ha of C02 was estimated to have been sequestered using the non-destructive field measurement. Conclusion: Total average standing biomass of various tree species was calculated to be 907.6395 tons/ha whereas the total average carbon sequestered was 302.6918 tons/ha. Carbon sequestration capacity of trees increased as the age of trees increases. Therefore it can be concluded that the older trees have higher carbon content than younger trees hence, they are reservoirs of carbon.


2017 ◽  
Vol 9 (3) ◽  
pp. 1390-1396
Author(s):  
K. R. Swamy ◽  
D. Shivaprasad ◽  
Shivaputra Bammanahalli ◽  
Noorandappa Lamani ◽  
H. Shivanna

Carbon sequestration has been suggested as a means to mitigate the increase in atmospheric carbon dioxide concentration. As agrisilviculture systems is one of the better options for stocking of carbon in plants and in soil. In the present study, carbon sequestration was quantified both biomass as well as in soil of agrisilviculture sys-tem six different tree species were selected such as, Pongamia pinnata, Dalbergia sissoo, Acacia auriculiformis, Tectona grandis, Casuarina equisitifolia, Azadirachta indica in shelterbelt of agroforestry system in arid region of Karnataka. Among six different tree species planted under shelterbelt, the growth performance with respect to gbh, height, clear bole height and basal area was highest in A. auriculiformis and A. indica. While maximum above ground biomass was observed in A. auriculiformis (59.75 t ha-1) followed by T.grandis (56.62 t ha-1), respectively. Whereas, below ground biomass was highest in T. grandis (20.25t ha-1) followed by A. auriculiformis (14.75t ha-1). Above ground carbon sequestration was highest in A. auriculiformis (13.30 t ha-1) followed by T. grandis (12.20 t ha-1), respectively. Whereas, below ground carbon sequestration was more in T. grandis (4.35 t ha-1) followed by A. auriculiformis (3.95 t ha-1). The Shelterbelt system sequestered 0.43 to 1.34% soil organic carbon stock in different depth. The carbon sequestered in different tree species was varying from 3.48 tons to 17.25 t ha-1.Growing tree crops in shelterbelts, bunds in the agroforestry systems will enhance accumulation of carbon stocking and provide additional benefits to the farmer’s income. It also regulates microclimate and increases the tree cover in agricultural field.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Gerong Wang ◽  
Yue Sun ◽  
Mo Zhou ◽  
Naiqian Guan ◽  
Yuwen Wang ◽  
...  

Abstract Background Herbs are an important part of the forest ecosystem, and their diversity and biomass can reflect the restoration of vegetation after forest thinning disturbances. Based on the near-mature secondary coniferous and broad-leaved mixed forest in Jilin Province Forestry Experimental Zone, this study analyzed seasonal changes of species diversity and biomass of the understory herb layer after different intensities of thinning. Results The results showed that although the composition of herbaceous species and the ranking of importance values were affected by thinning intensity, they were mainly determined by seasonal changes. Across the entire growing season, the species with the highest importance values in thinning treatments included Carex pilosa, Aegopodium alpestre, Meehania urticifolia, and Filipendula palmata, which dominated the herb layer of the coniferous and broad-leaved mixed forest. The number of species, Margalef index, Shannon-Wiener index and Simpson index all had their highest values in May, and gradually decreased with months. Pielou index was roughly inverted “N” throughout the growing season. Thinning did not increase the species diversity. Thinning can promote the total biomass, above- and below-ground biomass. The number of plants per unit area and coverage were related to the total biomass, above- and below-ground biomass. The average height had a significantly positive correlation with herb biomass in May but not in July. However, it exerted a significantly negative correlation with herb biomass in September. The biomass in the same month increased with increasing thinning intensity. Total herb biomass, above- and below-ground biomass showed positive correlations with Shannon-Winner index, Simpson index and Pielou evenness index in May. Conclusions Thinning mainly changed the light environment in the forest, which would improve the plant diversity and biomass of herb layer in a short time. And different thinning intensity had different effects on the diversity of understory herb layer. The findings provide theoretical basis and reference for reasonable thinning and tending in coniferous and broad-leaved mixed forests.


2020 ◽  
Vol 3 (1) ◽  
pp. 53
Author(s):  
Grasiele Dick ◽  
Humberto J. Eufrade-Junior ◽  
Mauro V. Schumacher ◽  
Gileno B. Azevedo ◽  
Saulo P. S. Guerra

The objective of this study was to evaluate whether there is an influence of different clonal hybrids of Eucalyptus urophylla on the carbon concentration and amount in below-ground biomass in trees cultivated in Oxisol, Brazil. Stumps and roots of three different eucalypt hybrid clones, AEC 0144, AEC 0223, and VM01, were selected, weighed immediately after being removed from the ground, and sampled for carbon determination and moisture content at the laboratory. The Shapiro-Wilk and Bartlett tests were used to evaluate data distribution and the homogeneity of variances, respectively. Analysis of variance (ANOVA) complemented by the Scott-Knott test was used to evaluate the effects of specie/hybrid on the below-ground biomass (dry matter) and carbon amount per stump. The hybrid type of Eucalyptus urophylla does not influence the carbon concentration; however, there is a difference in below-ground biomass production and carbon amount with it being higher for Eucalyptus urophylla × Eucalyptus camaldulensis when compared to the species Eucalyptus urophylla and hybrid Eucalyptus urophylla × Eucalyptus grandis.


2007 ◽  
Vol 99 (1) ◽  
pp. 95-102 ◽  
Author(s):  
D.-L. Cheng ◽  
K. J. Niklas
Keyword(s):  

PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e32162 ◽  
Author(s):  
Qiang Yu ◽  
Honghui Wu ◽  
Nianpeng He ◽  
Xiaotao Lü ◽  
Zhiping Wang ◽  
...  

2019 ◽  
Vol 65 (4) ◽  
pp. 155-163
Author(s):  
Miriam Kizeková ◽  
Radoslava Kanianska ◽  
Ľubica Jančová ◽  
Jozef Čunderlík ◽  
Zuzana Dugátová ◽  
...  

Abstract This paper aimed to monitory the dry matter biomass production and carbon stocks of above-and below-ground biomass in five types of grasslands in Slovakia: i) lowland oversowed pasture ii) lowland hay meadows, iii) mesophilous pasture, iv) mountain hay meadows, v) abandoned grassland. Averaged over two cropping seasons the total above-and below-ground biomass differed significantly across the monitored grasslands. It ranged respectively from 2.18 to 7.86 t/ha and from 9.64 to 22.67 t/ha dry matter depending on the pedoclimatic condition and the botanical composition of each grassland type. Consequently, this resulted also in the carbon stocks in above-and below-ground biomass. Generally, the mean carbon stocks were 1.56 t/ha for above-ground biomass (24%) and 4.83 t/ha for below-ground biomass (76%). The botanical composition for all the grassland types was also described. The highest number of plant species (55) was observed in lowland hay meadow located in Slovak Karst, the lowest one (23) for the oversowed grassland located in Eastern Slovak Upland. This monitoring paper showed that semi-natural grassland habitats and improved grasslands as well are an important carbon sink, and they can play a key role in global climate change mitigation.


Sign in / Sign up

Export Citation Format

Share Document