Isotopes (δD and δ18O) in precipitation, groundwater and surface water in the Ordos Plateau, China: implications with respect to groundwater recharge and circulation

2010 ◽  
Vol 19 (2) ◽  
pp. 429-443 ◽  
Author(s):  
Lihe Yin ◽  
Guangcai Hou ◽  
XiaoSi Su ◽  
Dong Wang ◽  
Jiaqiu Dong ◽  
...  
2013 ◽  
Vol 68 (11) ◽  
pp. 2427-2433 ◽  
Author(s):  
Zhang Yan ◽  
Li Fadong ◽  
Li Jing ◽  
Liu Qiang ◽  
Zhao Guangshuai

Quantitative estimation of groundwater recharge is crucial for limited water resources management. A combination of isotopic and chemical indicators has been used to evaluate the relationship between surface water, groundwater, and rainfall around the riparian of the Yellow River in the North China Plain (NCP). The ion molar ratio of sodium to chloride in surface- and groundwater is 0.6 and 0.9, respectively, indicating cation exchange of Ca2+ and/or Mg2+ for Na+ in groundwater. The δD and δ18O values in rainfall varied from −64.4 to −33.4‰ and from −8.39 to −4.49‰. The groundwater samples have δD values in the range of −68.7 to −58.0‰ and δ18O from −9.29 to −6.85‰. The δ18O and δD in surface water varied from −8.51 to −7.23‰ and from −64.42 to −53.73‰. The average values of both δD and δ18O from surface water are 3.92‰ and 0.57‰, respectively, higher compared to groundwater. Isotopic composition indicated that the groundwater in the riparian area of the Yellow River was influenced by heavy rainfall events and seepage of surface water. The mass balance was applied for the first time to estimate the amount of recharge, which is probably 6% and 94% of the rainfall and surface water, respectively.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2880
Author(s):  
Apolline Bambara ◽  
Philippe Orban ◽  
Issoufou Ouedraogo ◽  
Eric Hallot ◽  
Francis Guyon ◽  
...  

Through the practice of irrigation, surface water reservoirs (SWRs) contribute to the socio-economic development and food production activities of populations in Sub-Saharan Africa (SSA). However, they tend to dry up prematurely. One solution to circumvent these irrigation water shortages is to ensure their conjunctive use with groundwater. The objective of this study is to better understand the contribution of SWRs to groundwater recharge and to determine if groundwater may be considered as a complementary local resource for irrigation. The study was carried out on two watersheds in Burkina Faso, Kierma and Mogtedo. The spatiotemporal analysis of piezometric and SWRs level records coupled with physico-chemical analyses of water was used to characterize exchanges between SWRs and groundwater. The regional groundwater recharge at the scale of the watersheds was assessed. At the SWRs scale, a water balance methodology was developed and used to estimate focused recharge. The results show that SWRs interact almost continuously with groundwater and contribute focused recharge. The magnitude of this recharge is a function of the geological context and the sediment texture of the SWRs. It is estimated at 5 mm/day in Kierma and 4 mm/day in Mogtédo. These values are higher than the natural recharge estimated at 0.2 mm/day in Kierma and 0.1 mm/day in Mogtédo. Additionally, the values of hydraulic conductivity are between 0.01 and 2 m/day in Kierma and between 1 × 10−4 and 0.2 m/day in Mogtédo. These conductivities could allow pumping in large-diameter hand-dug wells with a significant yield between 0.5 and 120 m3/day in Kierma and between 0 and 10 m3/day in Mogtédo to palliate the early drying up of the SWRs.


Koedoe ◽  
2020 ◽  
Vol 62 (2) ◽  
Author(s):  
Edward S. Riddell ◽  
Jaco Nel ◽  
Johan Van Tol ◽  
Daniel Fundisi ◽  
Faith Jumbi ◽  
...  

The semi-arid conditions in savanna landscapes ensure that ephemeral drainage dominates the hydrological network in these dryland systems. Quantification of their hydrological processes is important to inform ecosystem understanding and future conservation efforts under a changing climate, and to provide guidance for restoration. By combining in situ hydrometric observations, hydrochemistry, remote sensing and a soil water balance model, we characterise the groundwater–surface water interactions in ephemeral low-order catchments of the granitoid regions of the southern Kruger National Park (KNP). Streams at the lowest orders are augmented by lateral interflows from the catena, although the second- and third-order stream reaches are conduits for groundwater recharge to the fractured rock aquifer; the soils of the crests and foot-slopes also show preferential flow, and are truly recharge soils, whilst the duplex soils of the midslopes clearly show their responsive nature to a low soil moisture deficit in the shallow horizons. Actual evaporation (aET) differed between catena elements with surprisingly little variation at third-order hillslopes, with the greatest overall aET at the first order. Meanwhile, soil water balances demonstrated a significant variation in storage of the riparian zones as a result of interflow from upslope and aET losses. Furthermore, data support broader-scale observations that groundwater recharge through the vadose zone to the fractured rock aquifer is dependent upon threshold antecedent precipitation conditions. Moderate precipitation events (5 mm/day – 35 mm/day) over a 2–3 week period initiate groundwater responses with a 2–3 month lag, whilst intense precipitation events (100 mm/day) are expressed within 2–3 weeks.Conservation implications: Understanding the lateral connectivity of terrestrial ecosystems to the ephemeral drainage network expressed via hydrological processes in these savanna landscapes is important to infer potential impacts of climate variability on the continued conservation of these ecosystems, both within and external to protected areas.


2011 ◽  
Vol 19 (8) ◽  
pp. 1563-1575 ◽  
Author(s):  
Lihe Yin ◽  
Guangcheng Hu ◽  
Jinting Huang ◽  
Dongguang Wen ◽  
Jiaqiu Dong ◽  
...  

2017 ◽  
Author(s):  
Jihong Qu ◽  
Shibao Lu ◽  
Zhipeng Gao ◽  
Wujin Li ◽  
Zhiping Li ◽  
...  

Abstract. The transforming relationship between surface water and groundwater as well as their origins are the basis for studying the transport of pollutants in river-groundwater systems. A typical section of the river was chosen to sample the surface water and shallow groundwater. Then, a Piper trilinear diagram, Gibbs diagram, ratios of major ions, factor analysis, cluster analysis and other methods were used to investigate the hydrogeochemical evolution of surface water and groundwater and determine the formation of hydrogeochemical components in different water bodies. Based on the distribution characteristics of hydrogen and oxygen stable isotopes δD and δ18O and discharge hydrograph separation methods, the relationship between surface water and groundwater in the Weihe River was analyzed. The results indicated that the river water is a SO4·Cl—Na type and that the groundwater hydrogeochemical types are not the same. The dominant anions are HCO3− in the upstream reaches and are SO42− and Cl− in downstream reaches. Hydrogeochemical processes include evaporation and concentration, weathering of rocks, ion exchange, and dissolution infiltration reactions. The δD and δ18O of surface water change little along the river and are more enriched than are those of the groundwater. With the influences of precipitation, irrigation, river recharge and evaporation, the δD and δ18O of shallow groundwater at different sections are not the same. There is a close relationship between the surface water and groundwater. Surface water supplies the groundwater, which provides the hydrodynamic conditions for the entry of pollutants into the aquifer.


2019 ◽  
Author(s):  
Robert Reinecke ◽  
Laura Foglia ◽  
Steffen Mehl ◽  
Jonathan D. Herman ◽  
Alexander Wachholz ◽  
...  

Abstract. In global hydrological models, groundwater storages and flows are generally simulated by linear reservoir models. Recently, the first global gradient-based groundwater models were developed in order to improve the representation of groundwater-surface water interactions, capillary rise, lateral flows and human water use impacts. However, the reliability of model outputs is limited by a lack of data as well as model assumptions required due to the necessarily coarse spatial resolution. The impact of data quality is presented by showing the sensitivity of a groundwater model to changes in the only available global hydraulic conductivity data-set. To better understand the sensitivity of model output to uncertain spatially distributed parameter inputs, we present the first application of a global sensitivity method for a global-scale groundwater model using nearly 2000 steady-state model runs of the global gradient-based groundwater model G3M. By applying the Morris method in a novel domain decomposition approach that identifies global hydrological response units, spatially distributed parameter sensitivities are determined for a computationally expensive model. Results indicate that globally simulated hydraulic heads are equally sensitive to hydraulic conductivity, groundwater recharge and surface water body elevation, though parameter sensitivities vary regionally. For large areas of the globe, rivers are simulated to be either losing or gaining, depending on the parameter combination, indicating a high uncertainty of simulating the direction of flow between the two compartments. Mountainous and dry regions show a high variance in simulated head due to numerical difficulties of the model, limiting the reliability of computed sensitivities in these regions. This instability is likely caused by the uncertainty in surface water body elevation. We conclude that maps of spatially distributed sensitivities can help to understand complex behaviour of models that incorporate data with varying spatial uncertainties. The findings support the selection of possible calibration parameters and help to anticipate challenges for a transient coupling of the model.


2019 ◽  
Vol 23 (11) ◽  
pp. 4561-4582 ◽  
Author(s):  
Robert Reinecke ◽  
Laura Foglia ◽  
Steffen Mehl ◽  
Jonathan D. Herman ◽  
Alexander Wachholz ◽  
...  

Abstract. In global hydrological models, groundwater storages and flows are generally simulated by linear reservoir models. Recently, the first global gradient-based groundwater models were developed in order to improve the representation of groundwater–surface-water interactions, capillary rise, lateral flows, and human water use impacts. However, the reliability of model outputs is limited by a lack of data and by uncertain model assumptions that are necessary due to the coarse spatial resolution. The impact of data quality is presented in this study by showing the sensitivity of a groundwater model to changes in the only available global hydraulic conductivity dataset. To better understand the sensitivity of model output to uncertain spatially distributed parameters, we present the first application of a global sensitivity method for a global-scale groundwater model using nearly 2000 steady-state model runs of the global gradient-based groundwater model G3M. By applying the Morris method in a novel domain decomposition approach that identifies global hydrological response units, spatially distributed parameter sensitivities are determined for a computationally expensive model. Results indicate that globally simulated hydraulic heads are equally sensitive to hydraulic conductivity, groundwater recharge, and surface water body elevation, though parameter sensitivities vary regionally. For large areas of the globe, rivers are simulated to be either losing or gaining, depending on the parameter combination, indicating a high uncertainty in simulating the direction of flow between the two compartments. Mountainous and dry regions show a high variance in simulated head due to numerical instabilities of the model, limiting the reliability of computed sensitivities in these regions. This is likely caused by the uncertainty in surface water body elevation. We conclude that maps of spatially distributed sensitivities can help to understand the complex behavior of models that incorporate data with varying spatial uncertainties. The findings support the selection of possible calibration parameters and help to anticipate challenges for a transient coupling of the model.


Sign in / Sign up

Export Citation Format

Share Document