Coupled modes in parallel pillar microcavities: theory

2000 ◽  
Vol 14 (4) ◽  
pp. 611-615
Author(s):  
G. Panzarini
Keyword(s):  
2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Naftali Kirsh ◽  
Elisha Svetitsky ◽  
Alexander L. Burin ◽  
Moshe Schechter ◽  
Nadav Katz

Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 11 ◽  
Author(s):  
Filippo Avanzi ◽  
Francesco De Vanna ◽  
Yin Ruan ◽  
Ernesto Benini

This study discusses a general framework to identify the unsteady features of a flow past an oscillating aerofoil in deep dynamic stall conditions. In particular, the work aims at demonstrating the advantages for the design process of the Spectral Proper Orthogonal Decomposition in accurately producing reliable reduced models of CFD systems and comparing this technique with standard snapshot-based models. Reynolds-Averaged Navier-Stokes system of equations, coupled with k−ω SST turbulence model, is used to produce the dataset, the latter consisting of a two-dimensional NACA 0012 aerofoil in the pitching motion. Modal analysis is performed on both velocity and pressure fields showing that, for vectored values, a proper tuning of the filtering process allows for better results compared to snapshot formulations and extract highly correlated coherent flow structures otherwise undetected. Wider filters, in particular, produce enhanced coherence without affecting the typical frequency response of the coupled modes. Conversely, the pressure field decomposition is drastically affected by the windowing properties. In conclusion, the low-order spectral reconstruction of the pressure field allows for an excellent prediction of aerodynamic loads. Moreover, the analysis shows that snapshot-based models better perform on the CFD values during the pitching cycle, while spectral-based methods better fit the loads’ fluctuations.


2014 ◽  
Vol 15 (11) ◽  
pp. 2357-2366 ◽  
Author(s):  
Wei Sun ◽  
Xin Ding ◽  
Jing Wei ◽  
Xinglong Hu ◽  
Qingguo Wang

2005 ◽  
Vol 59 (11) ◽  
pp. 1393-1398 ◽  
Author(s):  
Reikichi Iwamoto ◽  
Akishi Nara ◽  
Toshihiko Matsuda

In the present report we studied spectral characteristics of the near-infrared combination and overtone bands of CH vibrations of a CH sequence. The near-infrared bands of the CH in CHX3 (X, halogen), which were interpreted in terms of the CH stretching and CH deformation fundamentals without any ambiguity, typically showed how the frequency and intensity of a combination or an overtone depend on the vibrational excited state. In the CH–C–CH of CHX2CX2CHX2, the vibrations of one CH are isolated from those of the other CH, and the combination and overtone bands were similarly interpreted as those of the CH, although each of the combination bands was split into two because of non-degeneracy of the CH deformation. In the CH–CH of CHX2CHX2, the CH deformations only have coupled modes. The first combination showed four narrowly separate bands, which were reasonably interpreted on the basis of the CH stretching and the coupled CH deformation modes. We demonstrated that the first combination of coupled modes as well as the combination of up to, at least, the third order of isolated modes have the nature of the characteristic bands.


2007 ◽  
Vol 2007 ◽  
pp. 1-10 ◽  
Author(s):  
Shijie Guo

This paper demonstrates the investigations on the blade vibration of a radial inflow micro gas turbine wheel. Firstly, the dependence of Young's modulus on temperature was measured since it is a major concern in structure analysis. It is demonstrated that Young's modulus depends on temperature greatly and the dependence should be considered in vibration analysis, but the temperature gradient from the leading edge to the trailing edge of a blade can be ignored by applying the mean temperature. Secondly, turbine blades suffer many excitations during operation, such as pressure fluctuations (unsteady aerodynamic forces), torque fluctuations, and so forth. Meanwhile, they have many kinds of vibration modes, typical ones being blade-hub (disk) coupled modes and blade-shaft (torsional, longitudinal) coupled modes. Model experiments and FEM analysis were conducted to study the coupled vibrations and to identify the modes which are more likely to be excited. The results show that torque fluctuations and uniform pressure fluctuations are more likely to excite resonance of blade-shaft (torsional, longitudinal) coupled modes. Impact excitations and propagating pressure fluctuations are more likely to excite blade-hub (disk) coupled modes.


1991 ◽  
Vol 46 (1) ◽  
pp. 99-106 ◽  
Author(s):  
S. K. Sharma ◽  
A. Sudarshan

In this paper, we use the hydrodynamic approach to study the stimulated scattering of high-frequency electromagnetic waves by a low-frequency electrostatic perturbation that is either an upper- or lower-hybrid wave in a two-electron-temperature plasma. Considering the four-wave interaction between a strong high-frequency pump and the low-frequency electrostatic perturbation (LHW or UHW), we obtain the dispersion relation for the scattered wave, which is then solved to obtain an explicit expression for the growth rate of the coupled modes. For a typical Q-machine plasma, results show that in both cases the growth rate increases with noh/noc. This is in contrast with the results of Guha & Asthana (1989), who predicted that, for scattering by a UHW perturbation, the growth rate should decrease with increasing noh/noc.


Author(s):  
Miguel Moreira ◽  
Jose´ Antunes

Fluid-coupling effects lead to a complex dynamical behavior of immersed spent fuel assembly storage racks. Predicting their responses under strong earthquakes is of prime importance for the safety of nuclear plant facilities. In the near-past we introduced a simplified linearized model for the vibrations of such systems, in which gap-averaged velocity and pressure fields were described analytically in terms of a single space-coordinate for each fluid inter-rack channel. Using such approach it was possible to generate and assemble a complete set of differential-algebraic equations describing the multi-rack fluid coupled system dynamics. Because of the linearization assumptions, we achieved computation of the flow-structure coupled modes, but also time-domain simulations of the system responses. However, nonlinear squeeze-film and dissipative flow effects, connected with very large amplitude responses and/or relatively small water gaps, cannot be properly accounted unless the linearization assumption is relaxed. Such is the aim of the present paper. Here, using a similar approach, we generalize our theoretical model to deal with nonlinear flow effects. Besides that the proposed methodology can be automatically implemented in a symbolic computational environment, it is much less computer-intensive than finite element formulations. Using the proposed technique, computations of basic flow-coupled rack configurations subjected to impulse excitations are presented, in order to highlight the essential features of such systems as well as the relevance of squeeze-film and dissipative effects. Finally, more realistic simulations of complex system responses to strong seismic excitations are presented and discussed.


Author(s):  
Robert X. Wang ◽  
Graham M. Chapman

Abstract This paper reports on the application of Electronic Speckle Pattern Interferometry (ESPI) technique in vibration measurement of turbine blading. Using the time-averaged mode of ESPI, the first six modes of a turbocharger blade with airfoil profile were identified. The effect of the complicated profile of the blade was established by studying simplified model blades. Coupled modes were identified and successfully separated. Experimental results are compared with those obtained using finite element analysis.


2000 ◽  
Author(s):  
H. Zheng ◽  
C. Cai ◽  
G. R. Liu ◽  
K. Y. Lam

Abstract A numerical simulation of structural vibration and acoustic radiation is presented for a finite, fluid-loaded plate reinforced with two sets of orthotropic stiffeners. The attempt is to achieve a physical understanding of the dynamic behaviour and especially the acoustic radiation of the stiffened plate under combined force and moment excitations. Finite element method (FEM) is employed for calculation of the in-vacuo normal modes of the stiffened plate. The coupled modes with a heavy fluid (water), vibration response and acoustic radiation of the plate under given force and/or moment excitation are calculated using boundary element method (BEM). Numerical simulation results are detailed to address the significance of moment in combined force-moment excitations and, more importantly, the cancelling of the combined excitation in both structural vibration response and the associated acoustic radiation into the surrounding fluid.


Sign in / Sign up

Export Citation Format

Share Document