Vascular regeneration effect of adipose-derived stem cells with light-emitting diode phototherapy in ischemic tissue

2015 ◽  
Vol 30 (2) ◽  
pp. 533-541 ◽  
Author(s):  
In-Su Park ◽  
Arindam Mondal ◽  
Phil-Sang Chung ◽  
Jin Chul Ahn
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Barbara Sampaio Dias Martins Mansano ◽  
Vitor Pocani da Rocha ◽  
Ednei Luiz Antonio ◽  
Daniele Fernanda Peron ◽  
Rafael do Nascimento de Lima ◽  
...  

This study evaluated the effects of light-emitting diode (LED) on mesenchymal stem cells (MSCs). An electronic search was conducted in PubMed/MEDLINE, Scopus, and Web of Science database for articles published from 1980 to February 2020. Ten articles met the search criteria and were included in this review. The risk of bias was evaluated to report quality, safety, and environmental standards. MSCs were derived from adipose tissue, bone marrow, dental pulp, gingiva, and umbilical cord. Protocols for cellular irradiation used red and blue light spectrum with variations of the parameters. The LED has been shown to induce greater cellular viability, proliferation, differentiation, and secretion of growth factors. The set of information available leads to proposing a complex signaling cascade for the action of photobiomodulation, including angiogenic factors, singlet oxygen, mitogen-activated protein kinase/extracellular signal-regulated protein kinase, Janus kinase/signal transducer, and reactive oxygen species. In conclusion, although our results suggest that LED can boost MSCs, a nonuniformity in the experimental protocol, bias, and the limited number of studies reduces the power of systematic review. Further research is essential to find the optimal LED irradiation parameters to boost MSCs function and evaluate its impact in the clinical setting.


2021 ◽  
Vol 12 ◽  
pp. 204173142110670
Author(s):  
Yu-Jin Kim ◽  
Hye Ran Jeon ◽  
Sung-Won Kim ◽  
Yeong Hwan Kim ◽  
Gwang-Bum Im ◽  
...  

Comprehensive research has led to significant preclinical outcomes in modified human adipose-derived mesenchymal stem cells (hADSCs). Photobiomodulation (PBM), a technique to enhance the cellular capacity of stem cells, has attracted considerable attention owing to its effectiveness and safety. Here, we suggest a red organic light-emitting diode (OLED)-based PBM strategy to augment the therapeutic efficacy of hADSCs. In vitro assessments revealed that hADSCs basked in red OLED light exhibited enhanced angiogenesis, cell adhesion, and migration compared to naïve hADSCs. We demonstrated that the enhancement of cellular capacity was due to an increased level of intracellular reactive oxygen species. Furthermore, accelerated healing and regulated inflammatory response was observed in mice transplanted with red light-basked hADSCs. Overall, our findings suggest that OLED-based PBM may be an easily accessible and attractive approach for tissue regeneration that can be applied to various clinical stem cell therapies.


Sign in / Sign up

Export Citation Format

Share Document