scholarly journals Spatiotemporal variability in Terminos Lagoon (Mexico) waters during the 2009–2010 drought reveals upcoming trophic status shift in response to climate change

2019 ◽  
Vol 19 (6) ◽  
pp. 1787-1799
Author(s):  
Renaud Fichez ◽  
Carlos Linares ◽  
Sandrine Chifflet ◽  
Pascal Conan ◽  
Adolfo Contreras Ruiz Esparza ◽  
...  
2006 ◽  
Vol 34 (4) ◽  
pp. 349-359 ◽  
Author(s):  
Ilias Bertahas ◽  
Elias Dimitriou ◽  
Ioannis Karaouzas ◽  
Sofia Laschou ◽  
Ierotheos Zacharias

2021 ◽  
Author(s):  
Carolina Gallo Granizo ◽  
Jonathan Eden ◽  
Bastien Dieppois ◽  
Matthew Blackett

<p>Weather and climate play an important role in shaping global fire regimes and geographical distributions of burnable areas. At the global scale, fire danger is likely to increase in the near future due to warmer temperatures and changes in precipitation patterns, as projected by the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). There is a need to develop the most reliable projections of future climate-driven fire danger to enable decision makers and forest managers to take both targeted proactive actions and to respond to future fire events.</p><p>Climate change projections generated by Earth System Models (ESMs) provide the most important basis for understanding past, present and future changes in the climate system and its impacts. ESMs are, however, subject to systematic errors and biases, which are not fully taken into account when developing risk scenarios for wild fire activity. Projections of climate-driven fire danger have often been limited to the use of single models or the mean of multi-model ensembles, and compared to a single set of observational data (e.g. one index derived from one reanalysis).</p><p>Here, a comprehensive global evaluation of the representation of a series of fire weather indicators in the latest generation of ESMs is presented. Seven fire weather indices from the Canadian Forest Fire Weather Index System were generated using daily fields realisations simulated by 25 ESMs from the 6<sup>th</sup> Coupled Model Intercomparison Project (CMIP6). With reference to observational and reanalysis datasets, we quantify the capacity of each model to realistically simulate the variability, magnitude and spatial extent of fire danger. The highest-performing models are identified and, subsequently, the limitations of combining models based on independency and equal performance when generating fire danger projections are discussed. To conclude, recommendations are given for the development of user- and policy-driven model evaluation at spatial scales relevant for decision-making and forest management.</p>


2016 ◽  
Vol 130 (3-4) ◽  
pp. 831-845 ◽  
Author(s):  
Rengui Jiang ◽  
Jiancang Xie ◽  
Yong Zhao ◽  
Hailong He ◽  
Guohua He

2020 ◽  
Author(s):  
Gabriela Gesualdo ◽  
Felipe Souza ◽  
Eduardo Mendiondo

<p>Extreme weather events are increasingly evident and widespread around the world due to climate change. These events are driven by rising temperatures and changes in precipitation patterns, which lead to changes in flood frequency, drought and water availability. To reduce the future impacts of natural disasters, it is crucial to understand the spatiotemporal variability of social, economic and environmental vulnerabilities related to natural disasters. Particularly, developing countries are more vulnerable to climate risks due to their greater economic dependence on climate-sensitive primary activities, infrastructure, finance and other factors that undermine successful adaptation. In this concept, adaptation plays the role of anticipating the adverse effects of climate change and taking appropriate measures to prevent or minimize the damage they may cause. Thus, the insurance fund is a valuable adaptation tool for unexpected losses reimbursement, long-term impacts prevention and encouraging risk mitigation. Although this approach is successful throughout the world and major organizations support insurance as an adaptation measure, the Brazilian insurance fund only provides support for rural landowners. Thus, we will evaluate the implementation of an indexed multi-risk insurance fund integrated with water security parameters, as an instrument for adaptation to climate change. We will use the SWAT+, a hydrosedimentological model, to assess the current conditions and future scenarios (up to 2100) of water security indices considering two International Panel on Climate Change (IPCC) Representative Concentration Pathways (RCP 4.5 and RCP 8.5). Then, we will incorporate those parameters to the Hydrological Risk Transfer Model (MTRH). Our results will provide optimized premium in current and future scenarios for supporting adaptation plans to climate change. Furthermore, to contribute to technical-scientific information addressing possible effects of climate change on the hydrometeorological variables and their spatiotemporal variability.</p>


Author(s):  
Carina Almeida ◽  
Paulo Branco ◽  
Pedro Segurado ◽  
Tiago B. Ramos ◽  
Teresa Ferreira ◽  
...  

Abstract This study describes an integrated modelling approach to better understand the trophic status of the Montargil reservoir (southern Portugal) under climate change scenarios. The SWAT and CE-QUAL-W2 models were applied to the basin and reservoir, respectively, for simulating water and nutrient dynamics while considering one climatic scenario and two decadal timelines (2025–2034 and 2055–2064). Model simulations showed that the dissolved oxygen concentration in the reservoir's hypolimnion is expected to decrease by 60% in both decadal timelines, while the chlorophyll-a concentration in the reservoir's epiliminion is expected to increase by 25%. The total phosphorus concentration (TP) is predicted to increase in the water column surface by 63% and in the hypolimion by 90% during the 2030 timeline. These results are even more severe during the 2060 timeline. Under this climate change scenario, the reservoir showed an eutrophic state during 70–80% of both timelines. Even considering measures that involve decreases in 30 to 35% of water use, the eutrophic state is not expected to improve.


2021 ◽  
Author(s):  
Vijay Sreeparva ◽  
V.V Srini

Abstract In recent decades, human-induced climate change has caused a worldwide increase in the frequency/intensity/duration of extreme events, resulting in enormous disruptions to life and property. Hence, a comprehensive understanding of global-scale spatiotemporal trends and variability of extreme events at different intensity levels (e.g., moderate/severe/extreme) and durations (e.g., short-term/long-term) of normal, dry and wet conditions is essential in predicting/forecasting/mitigating future extreme events. This article analyses these aspects using estimates of a non-stationary standardized precipitation evapotranspiration index corresponding to different accumulation periods for 0.5˚ CRU resolution grids at globe-scale. Results are analyzed with respect to changes in land-use/landcover and location/geographic (latitude, longitude, elevation) indicators at different time scales (decadal/annual/seasonal/monthly) for each continent. The analysis showed an (i) increasing trend in the frequency/count of both dry and wet conditions and variability of dry conditions, and (ii) contrasting (decreasing) trend in the variability of wet conditions, possibly due to climate change-induced variations in atmospheric circulations. Globally, the highest variability in the wet and dry conditions is found during the Northern hemisphere's winter season. The decadal-scale analysis showed that change in variability in dry and wet conditions has been predominant from the 1930s and 1950s, respectively and is found to be increasing in recent decades.


2018 ◽  
Author(s):  
Karun Pandit ◽  
Hamid Dashti ◽  
Nancy F. Glenn ◽  
Alejandro N. Flores ◽  
Kaitlin C. Maguire ◽  
...  

Abstract. Gross primary production (GPP) is one of the most critical processes in the global carbon cycle, but is difficult to quantify in part because of its high spatiotemporal variability. Direct techniques to quantify GPP are lacking, thus, researchers rely on data inferred from eddy covariance (EC) towers and/or ecosystem dynamic models. The latter are useful to quantify GPP over time and space because of their efficiency over direct field measurements and applicability to broad spatial extents. However, such models have also been associated with internal uncertainties and complexities arising from distinct qualities of the ecosystem being analyzed. Widely distributed sagebrush-steppe ecosystems in western North America are threatened by anthropogenic disturbance, invasive species, climate change, and altered fire regimes. Although land managers have focused on different restoration techniques, the effects of these activities and their interactions with fire, climate change, and invasive species on ecosystem dynamics are poorly understood. In this study, we applied an ecosystem dynamic model, Ecosystem Demography (EDv2.2), to parameterize and predict GPP for sagebrush-steppe ecosystems in the Reynolds Creek Experimental Watershed (RCEW), located in the northern Great Basin. Our primary objective was to develop and parameterize a sagebrush (Artemisia spp.) shrubland Plant Functional Type (PFT) for use in the EDv2.2 model, which will support future studies to model estimates of GPP under different climate and management scenarios. To accomplish this, we employed a three-tiered approach. First, to parameterize the sagebrush PFT, we fitted allometric relationships for sagebrush using field-collected data, gathered information from existing sagebrush literature, and borrowed values from other PFTs in EDv2.2. Second, we identified the five most sensitive parameters out of thirteen that were found to be influential in GPP prediction based on previous studies. Third, we optimized the five parameters using an exhaustive search method to predict GPP, and performed validation using observations from two EC sites in the study area. Our modeled results were encouraging, with reasonable fidelity to observed values, although some negative biases (i.e., seasonal underestimates of GPP) were apparent. We expect that, with further refinement, the resulting sagebrush PFT will permit explicit scenario testing of potential anthropogenic modifications of GPP in sagebrush ecosystems, and will contribute to a better understanding of the role of sagebrush ecosystems in shaping global carbon cycles.


Author(s):  
YU. P. PEREVEDENTSEV ◽  
◽  
A. A. VASIL’EV ◽  
B. G. SHERSTYUKOV ◽  
K. M. SHANTALINSKII ◽  
...  

The spatiotemporal variability of surface air temperature and precipitation in Russia is considered using the data from 1251 stations for two periods: 1976-2019 and 2001-2019. Main attention is paid to the analysis of trends in the above characteristics, which made it possible to estimate the scale of climate warming in recent decades. The connection between the atmospheric circulation indices (NAO, AO, EAWR, SCAND) and temperature fluctuations in the European part of Russia is revealed.


2017 ◽  
Author(s):  
Annemarie Fraser ◽  
Ashu Dastoor ◽  
Andrei Ryjkov

Abstract. Wildfire frequency has increased in past four decades in Canada, and is expected to increase in future as a result of climate change (Wotton et al., 2010). Mercury (Hg) emissions from biomass burning are known to be significant; however, the impact of biomass burning on air concentration and deposition fluxes in Canada has not been previously quantified. We use estimates of burned biomass from FINN (Fire Inventory from NCAR) and vegetation-specific Emission Factors (EFs) of mercury to investigate the spatiotemporal variability of Hg emissions in Canada. We use Environment and Climate Change Canada's GEM-MACH-Hg (Global Environmental Multi-scale, Modelling Air quality and Chemistry model, mercury version) to quantify the impact of biomass burning in Canada on spatiotemporal variability of air concentrations and deposition fluxes of mercury in Canada. We use North American gaseous elemental mercury (GEM) observations (2010–2015), GEM-MACH-Hg, and an inversion technique to optimize the emission factors for GEM for five vegetation types represented in North American fires to constrain the biomass burning impacts of mercury. We use three biomass burning Hg emissions scenarios in Canada to conduct three sets of model simulations for 2010–2015: two scenarios where Hg is emitted only as GEM using literature or optimized EFs, and a third scenario where Hg is emitted as GEM using literature EFs and particle bound mercury (PBM) emitted using the average GEM/PBM ratio from lab measurements. The three biomass burning emission scenarios represent the range of possible values for the impacts of Hg emissions from biomass burning in Canada on Hg concentration and deposition. We find total biomass burning Hg emissions to be highly variable from year to year, and estimate average 2010–2015 total atmospheric biomass burning emissions of Hg in Canada to be between 6–14 t during the biomass burning season (i.e., from May to September), which is 3–7 times the mercury emission from anthropogenic sources in Canada for this period. On average, 65 % of the emissions occur in the provinces west of Ontario. We find that while emissions from biomass burning have a small impact on surface air concentrations of GEM averaged over individual provinces/territories, the impact at individual sites can be as high as 95 % during burning events. We estimate average annual mercury deposition from biomass burning in Canada to be between 0.3–2.8 t, compared to 0.14 t of mercury deposition from anthropogenic sources during the biomass burning season in Canada. Compared to the biomass burning emissions, the relative impact of fires on mercury deposition is shifted eastward, with on average 54 % of the deposition occurring in provinces west of Ontario. While the relative contribution of Canadian biomass burning to the total mercury deposition over each province/territory is no more than 9 % between 2010–2015, the local contribution in some locations (including areas downwind of biomass burning) can be as high as 80 % (e.g. northwest of Great Slave Lake in 2014) from May-September. We find that northern Alberta and Saskatchewan, central British Columbia, and the area around Great Slave Lake in the Northwest Territories are at greater risk of mercury contamination from biomass burning. GEM is considered to be the dominant mercury species emitted from biomass burning; however, there remains an uncertainty in the speciation of mercury released from biomass burning. We find that the impact of biomass burning emissions on mercury deposition is significantly affected by the uncertainty in speciation of emitted mercury because PBM is more readily deposited closer to the emission sources than GEM; an addition of ~ 18 % of mercury emission from biomass burning in the form of PBM in the model increases the 6 year average deposition by ~ 4 times.


2013 ◽  
Vol 13 (1) ◽  
pp. 117-128 ◽  
Author(s):  
C. A. Skjøth ◽  
C. Geels

Abstract. We present here a dynamical method for modelling temporal and geographical variations in ammonia emissions in regional-scale chemistry transport models (CTMs) and chemistry climate models (CCMs). The method is based on the meteorology in the models and gridded inventories. We use the dynamical method to investigate the spatiotemporal variability of ammonia emissions across part of Europe and study how these emissions are related to geographical and year-to-year variations in atmospheric temperature alone. For simplicity we focus on the emission from a storage facility related to a standard Danish pig stable with 1000 animals and display how emissions from this source would vary geographically throughout central and northern Europe and from year to year. In view of future climate changes, we also evaluate the potential future changes in emission by including temperature projections from an ensemble of climate models. The results point towards four overall issues. (1) Emissions can easily vary by 20% for different geographical locations within a country due to overall variations in climate. The largest uncertainties are seen for large countries such as the UK, Germany and France. (2) Annual variations in overall climate can at specific locations cause uncertainties in the range of 20%. (3) Climate change may increase emissions by 0–40% in central to northern Europe. (4) Gradients in existing emission inventories that are seen between neighbour countries (e.g. between the UK and France) can be reduced by using a dynamical methodology for calculating emissions. Acting together these four factors can cause substantial uncertainties in emission. Emissions are generally considered among the largest uncertainties in the model calculations made with CTM and CCM models. Efforts to reduce uncertainties are therefore highly relevant. It is therefore recommended that both CCMs and CTMs implement a dynamical methodology for simulating ammonia emissions in a similar way as for biogenic volatile organic compound (BVOCs) – a method that has been used for more than a decade in CTMs. Finally, the climate penalty on ammonia emissions should be taken into account at the policy level such as the NEC and IPPC directives.


Sign in / Sign up

Export Citation Format

Share Document