scholarly journals Detection of cancer cells disseminated in bone marrow using real-time quantitative RT-PCR of CEA, CK19, and CK20 mRNA in patients with gastric cancer

2006 ◽  
Vol 9 (4) ◽  
pp. 308-314 ◽  
Author(s):  
Yasuki Fujita ◽  
Masanori Terashima ◽  
Yutaka Hoshino ◽  
Satoshi Ohtani ◽  
Seigo Kashimura ◽  
...  
2002 ◽  
Vol 188 (1-2) ◽  
pp. 191-198 ◽  
Author(s):  
Eiji Oki ◽  
Yoshihiko Maehara ◽  
Eriko Tokunaga ◽  
Kotaro Shibahara ◽  
Shota Hasuda ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Feng Yang ◽  
Anpei Hu ◽  
Dan Li ◽  
Jianqun Wang ◽  
Yanhua Guo ◽  
...  

Abstract Background Circular RNAs (circRNAs), a subclass of non-coding RNAs, play essential roles in tumorigenesis and aggressiveness. Our previous study has identified that circAGO2 drives gastric cancer progression through activating human antigen R (HuR), a protein stabilizing AU-rich element-containing mRNAs. However, the functions and underlying mechanisms of circRNAs derived from HuR in gastric cancer progression remain elusive. Methods CircRNAs derived from HuR were detected by real-time quantitative RT-PCR and validated by Sanger sequencing. Biotin-labeled RNA pull-down, mass spectrometry, RNA immunoprecipitation, RNA electrophoretic mobility shift, and in vitro binding assays were applied to identify proteins interacting with circRNA. Gene expression regulation was observed by chromatin immunoprecipitation, dual-luciferase assay, real-time quantitative RT-PCR, and western blot assays. Gain- and loss-of-function studies were performed to observe the impacts of circRNA and its protein partner on the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. Results Circ-HuR (hsa_circ_0049027) was predominantly detected in the nucleus, and was down-regulated in gastric cancer tissues and cell lines. Ectopic expression of circ-HuR suppressed the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. Mechanistically, circ-HuR interacted with CCHC-type zinc finger nucleic acid binding protein (CNBP), and subsequently restrained its binding to HuR promoter, resulting in down-regulation of HuR and repression of tumor progression. Conclusions Circ-HuR serves as a tumor suppressor to inhibit CNBP-facilitated HuR expression and gastric cancer progression, indicating a potential therapeutic target for gastric cancer.


2003 ◽  
Vol 124 (4) ◽  
pp. A606-A607
Author(s):  
Nikolaus Ansorge ◽  
Kerem Bulut ◽  
Peter Felderbauer ◽  
Jan-Michel Otte ◽  
Young-Ran Suh ◽  
...  

2010 ◽  
Vol 34 (9) ◽  
pp. 2083-2089 ◽  
Author(s):  
Seiji Ito ◽  
Yasuhiro Kodera ◽  
Yoshinari Mochizuki ◽  
Taiki Kojima ◽  
Hayao Nakanishi ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dandan Chai ◽  
Huifen Du ◽  
Kesheng Li ◽  
Xueliang Zhang ◽  
Xiaoqin Li ◽  
...  

Abstract Background Ectopic expression of CDX2 is associated with the development and progression of gastric cancer. Previous studies showed that CDX2 may be an upstream regulator of Reg IV expression in gastric cancer, and our previous report showed that Reg IV upregulated SOX9 expression and enhanced cell migration and invasion in gastric cancer cells. However, the regulatory roles of CDX2 have not been clarified in gastric cancer, and the correlation between CDX2 and Reg IV requires further study. Methods CDX2 and Reg IV were examined in gastric cancer specimens and paired adjacent tissues via real-time PCR and immunohistochemistry (IHC). The association between CDX2 and Reg IV was assessed using the χ2-test and Spearman’s rank correlation. To verify their relationship, knockdown and exogenous expression of CDX2 or Reg IV were performed in AGS and MKN-45 gastric cancer cells, and their expression was subsequently analyzed via a real-time PCR and western blotting. Wound-healing and Transwell assays were used to examine migration and invasion in AGS and MKN-45 cells following CDX2 silencing or overexpression. Results A positive correlation was observed between CDX2 and Reg IV expression at the mRNA and protein levels in gastric cancer tissues. CDX2 silencing significantly downregulated Reg IV expression, and CDX2 overexpression significantly upregulated Reg IV expression in AGS and MKN-45 cells. Neither Reg IV silencing nor overexpression had any effect on CDX2 protein expression in AGS or MKN-45 cells, even though both affected the expression of CDX2 mRNA. Functionally, CDX2 silencing significantly inhibited cell migration and invasion, and CDX2 overexpression significantly promoted cell migration and invasion in AGS and MKN-45 cells. Conclusions Our findings demonstrate that CDX2 expression was positively correlated with that of Reg IV in gastric cancer, and CDX2 promoted cell migration and invasion through upregulation of Reg IV expression in AGS and MKN-45 cells.


Sign in / Sign up

Export Citation Format

Share Document