scholarly journals Transcriptome sequencing and global analysis of blue light-responsive genes provide clues for high carotenoid yields in Blakeslea trispora

Author(s):  
Xin Ge ◽  
Ruiqing Li ◽  
Xiaomeng Zhang ◽  
Jingyi Zhao ◽  
Yanan Zhang ◽  
...  
2021 ◽  
Author(s):  
Xin Ge ◽  
Ruiqing Li ◽  
Xiaomeng Zhang ◽  
Jingyi Zhao ◽  
Yanan Zhang ◽  
...  

Abstract Blakeslea trispora has great potential uses in industrial production because of the excellent capability of producing a large quantity of carotenoids. However, the mechanism of light induced carotenoid biosynthesis even the structural and regulatory genes in pathways remain unclear. In this paper, we reported the first transcriptome study in B. trispora in which we have carried out global survey of expression changes of genes participated in blue light response. We verified that the yield of β-carotene reaching to 3-fold when transferred from darkness to blue light for 24 h and the enhancement of transcription levels of carRA and carB presented a positive correlation with the increase in carotenoid production. RNA-seq analysis revealed that 1124 genes were upregulated and 740 genes were downregulated respectively after blue light exposure. Annotation through GO, KEGG, Swissprot and COG databases showed 11119 unigenes compared well with known gene sequences, 5514 unigenes were classified into Gene Ontology, and 4675 unigenes were involved in distinct pathways. Among the blue light responsive genes, 4 genes (carG1, carG3, carRA and carB) identified to function in carotenoid metabolic pathways were dominantly upregulated. We also discovered that 142 TF genes belonging to 45 different superfamilies showed significant differential expression (p≤ 0.05), 62 of which were obviously repressed by blue light. The detailed profile of transcription data will not only allow us to conduct further functional genomics study in B. trispora, but also enhance our understanding of potential metabolic pathway and regulatory network involved in light regulated carotenoid synthesis.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1079
Author(s):  
Lei Zhang ◽  
Gaiping Wang ◽  
Guibin Wang ◽  
Fuliang Cao

Light quality is a key environmental factor affecting plant growth and development. In this study, RNA-seq technology was used to explore the molecular mechanisms of ginkgo metabolism under different monochromatic lights. Leaves were used for transcriptome sequencing analysis after being irradiated by red, blue, and white LED lights. After treatment, 2040 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) analysis showed that the DEGs were annotated into 49 terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that 736 DEGs were enriched in 100 metabolic pathways, and 13 metabolic pathways were significantly enriched, especially ‘phenylpropanoid biosynthesis’ and ‘flavonoid biosynthesis’. Further analysis of DEGs expression in the two pathways showed that Ginkgo biloba adapts to blue light mainly by promoting the expression of GbFLS to synthesize quercetin, kaempferol, and myncetin, and adapts to red light by promoting the expression of GbDFR to synthesize leucocyanidin. Nine DEGs were randomly selected for qRT-PCR verification, and the gene expression results were consistent with that of transcriptome sequencing. In conclusion, this study is the first to explore the molecular mechanism of ginkgo in response to different monochromatic lights, and it will lay a foundation for the research and application of light quality in the cultivation of leaf-use G. biloba.


2021 ◽  
Vol 12 ◽  
Author(s):  
Enrique Pola-Sánchez ◽  
José Manuel Villalobos-Escobedo ◽  
Nohemí Carreras-Villaseñor ◽  
Pedro Martínez-Hernández ◽  
Emma Beatriz Beltrán-Hernández ◽  
...  

Light provides critical information for the behavior and development of basically all organisms. Filamentous fungi sense blue light, mainly, through a unique transcription factor complex that activates its targets in a light-dependent manner. In Trichoderma atroviride, the BLR-1 and BLR-2 proteins constitute this complex, which triggers the light-dependent formation of asexual reproduction structures (conidia). We generated an ENVOY photoreceptor mutant and performed RNA-seq analyses in the mutants of this gene and in those of the BLR-1, CRY-1 and CRY-DASH photoreceptors in response to a pulse of low intensity blue light. Like in other filamentous fungi BLR-1 appears to play a central role in the regulation of blue-light responses. Phenotypic characterization of the Δenv-1 mutant showed that ENVOY functions as a growth and conidiation checkpoint, preventing exacerbated light responses. Similarly, we observed that CRY-1 and CRY-DASH contribute to the typical light-induced conidiation response. In the Δenv-1 mutant, we observed, at the transcriptomic level, a general induction of DNA metabolic processes and strong repression of central metabolism. An analysis of the expression level of DNA repair genes showed that they increase their expression in the absence of env-1. Consistently, photoreactivation experiments showed that Δenv-1 had increased DNA repair capacity. Our results indicate that light perception in T. atroviride is far more complex than originally thought.


Author(s):  
Cristiano L. Guarana ◽  
Christopher M. Barnes ◽  
Wei Jee Ong
Keyword(s):  

2001 ◽  
Vol 11 (PR5) ◽  
pp. Pr5-293-Pr5-300 ◽  
Author(s):  
V. V. Silberschmidt ◽  
M. Ortmayr ◽  
C. Messner ◽  
E. A. Werner

Sign in / Sign up

Export Citation Format

Share Document