Pediatric trauma care with computed tomography—criteria for CT scanning

2015 ◽  
Vol 22 (6) ◽  
pp. 613-621 ◽  
Author(s):  
Markus Muhm ◽  
Tim Danko ◽  
Thomas Henzler ◽  
Thomas Luiz ◽  
Hartmut Winkler ◽  
...  
2020 ◽  
Vol 45 (3) ◽  
pp. 478-482
Author(s):  
Steven R. Manchester

Abstract—The type material on which the fossil genus name Ampelocissites was established in 1929 has been reexamined with the aid of X-ray micro-computed tomography (μ-CT) scanning and compared with seeds of extant taxa to assess the relationships of these fossils within the grape family, Vitaceae. The specimens were collected from a sandstone of late Paleocene or early Eocene age. Although originally inferred by Berry to be intermediate in morphology between Ampelocissus and Vitis, the newly revealed details of seed morphology indicate that these seeds represent instead the Ampelopsis clade. Digital cross sections show that the seed coat maintains its thickness over the external surfaces, but diminishes quickly in the ventral infolds. This feature, along with the elliptical chalaza and lack of an apical groove, indicate that Ampelocissites lytlensis Berry probably represents Ampelopsis or Nekemias (rather than Ampelocissus or Vitis) and that the generic name Ampelocissites may be useful for fossil seeds with morphology consistent with the Ampelopsis clade that lack sufficient characters to specify placement within one of these extant genera.


Author(s):  
Betül Tiryaki Baştuğ

Aims: In this study, we aimed to find the percentage of random pathologies and abdominopelvic region anomalies that are not related to trauma in pediatric patients. Background: An abdominal assessment of an injured child usually involves computed tomography imaging of the abdomen and pelvis (CTAP) to determine the presence and size of injuries. Imaging may accidentally reveal irrelevant findings. Objectives: Although the literature in adults has reviewed the frequency of discovering these random findings, few studies have been identified in the pediatric population. Methods: Data on 142( 38 female, 104 male) patients who underwent CTAP during their trauma evaluation between January 2019 and January 2020 dates were obtained from our level 3 pediatric trauma center trauma records. The records and CTAP images were examined retrospectively for extra traumatic pathologies and anomalies. Results: 67 patients (47%) had 81 incidental findings. There were 17 clinically significant random findings. No potential tumors were found in this population. Conclusion: Pediatric trauma CTAP reveals random findings. For further evaluation, incidental findings should be indicated in the discharge summaries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shota Ichikawa ◽  
Misaki Hamada ◽  
Hiroyuki Sugimori

AbstractBody weight is an indispensable parameter for determination of contrast medium dose, appropriate drug dosing, or management of radiation dose. However, we cannot always determine the accurate patient body weight at the time of computed tomography (CT) scanning, especially in emergency care. Time-efficient methods to estimate body weight with high accuracy before diagnostic CT scans currently do not exist. In this study, on the basis of 1831 chest and 519 abdominal CT scout images with the corresponding body weights, we developed and evaluated deep-learning models capable of automatically predicting body weight from CT scout images. In the model performance assessment, there were strong correlations between the actual and predicted body weights in both chest (ρ = 0.947, p < 0.001) and abdominal datasets (ρ = 0.869, p < 0.001). The mean absolute errors were 2.75 kg and 4.77 kg for the chest and abdominal datasets, respectively. Our proposed method with deep learning is useful for estimating body weights from CT scout images with clinically acceptable accuracy and potentially could be useful for determining the contrast medium dose and CT dose management in adult patients with unknown body weight.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Petri Paakkari ◽  
Satu I. Inkinen ◽  
Miitu K. M. Honkanen ◽  
Mithilesh Prakash ◽  
Rubina Shaikh ◽  
...  

AbstractPhoton-counting detector computed tomography (PCD-CT) is a modern spectral imaging technique utilizing photon-counting detectors (PCDs). PCDs detect individual photons and classify them into fixed energy bins, thus enabling energy selective imaging, contrary to energy integrating detectors that detects and sums the total energy from all photons during acquisition. The structure and composition of the articular cartilage cannot be detected with native CT imaging but can be assessed using contrast-enhancement. Spectral imaging allows simultaneous decomposition of multiple contrast agents, which can be used to target and highlight discrete cartilage properties. Here we report, for the first time, the use of PCD-CT to quantify a cationic iodinated CA4+ (targeting proteoglycans) and a non-ionic gadolinium-based gadoteridol (reflecting water content) contrast agents inside human osteochondral tissue (n = 53). We performed PCD-CT scanning at diffusion equilibrium and compared the results against reference data of biomechanical and optical density measurements, and Mankin scoring. PCD-CT enables simultaneous quantification of the two contrast agent concentrations inside cartilage and the results correlate with the structural and functional reference parameters. With improved soft tissue contrast and assessment of proteoglycan and water contents, PCD-CT with the dual contrast agent method is of potential use for the detection and monitoring of osteoarthritis.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 161
Author(s):  
Masakatsu Tsurusaki ◽  
Keitaro Sofue ◽  
Masatoshi Hori ◽  
Kosuke Sasaki ◽  
Kazunari Ishii ◽  
...  

Dual-energy computed tomography (DECT) is an imaging technique based on data acquisition at two different energy settings. Recent advances in CT have allowed data acquisitions and simultaneous analyses of X-rays at two energy levels, and have resulted in novel developments in the field of abdominal imaging. The use of low and high X-ray tube voltages in DECT provide fused images that improve the detection of liver tumors owing to the higher contrast-to-noise ratio (CNR) of the tumor compared with the liver. The use of contrast agents in CT scanning improves image quality by enhancing the CNR and signal-to-noise ratio while reducing beam-hardening artifacts. DECT can improve detection and characterization of hepatic abnormalities, including mass lesions. The technique can also be used for the diagnosis of steatosis and iron overload. This article reviews and illustrates the different applications of DECT in liver imaging.


2008 ◽  
Vol 1 (6) ◽  
pp. 493-495 ◽  
Author(s):  
Vamseemohan Beeram ◽  
Sundaram Challa ◽  
Prasad Vannemreddy

✓ Craniocerebral maduromycetoma is extremely rare. The authors describe a case of maduromycetoma involving the left parietal cortex, bone, and subcutaneous tissue in a young male farm laborer who presented with left parietal scalp swelling that had progressed into a relentlessly discharging sinus. Computed tomography (CT) scanning of his brain revealed osteomyelitis of the parietal bone with an underlying homogeneously enhancing tumor. Intraoperatively, the mass was revealed to be a black lesion involving the bone, dura mater, and underlying cerebral cortex. It was friable and separated from the surrounding brain by a thick gliotic scar. Gross-total excision was performed, and the patient was placed on a 6-week regimen of itraconazole. To the authors' knowledge, this is the first instance of cerebral mycetoma with CT findings reported in the literature.


2007 ◽  
Vol 63 (Supplement) ◽  
pp. S51
Author(s):  
Basil A. Pruitt
Keyword(s):  

2008 ◽  
Vol 43 (12) ◽  
pp. 2268-2272 ◽  
Author(s):  
Walter J. Chwals ◽  
Ann V. Robinson ◽  
Carlos J. Sivit ◽  
Diya Alaedeen ◽  
Ellen Fitzenrider ◽  
...  

2021 ◽  
Author(s):  
Eva Chatzinikolaou ◽  
Kleoniki Keklikoglou

Micro-computed tomography (micro-CT) is a high-resolution 3D-imaging technique which is now increasingly applied in biological studies focusing on taxonomy and functional morphology. The creation of virtual representations of specimens can increase availability of otherwise underexploited and inaccessible samples. This protocol aims to standardise micro-CT scanning procedures for embryos and juveniles of the marine gastropod species Hexaplex trunculus.


Sign in / Sign up

Export Citation Format

Share Document