Hydrochemical and Stable Isotope (δD and δ18O) Characteristics of Groundwater and Hydrogeochemical Processes in the Ningtiaota Coalfield, Northwest China

2017 ◽  
Vol 37 (1) ◽  
pp. 119-136 ◽  
Author(s):  
Xujuan Huang ◽  
Guangcai Wang ◽  
Xiangyang Liang ◽  
Linfeng Cui ◽  
Luan Ma ◽  
...  
Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1667 ◽  
Author(s):  
Nuan Yang ◽  
Guangcai Wang ◽  
Zheming Shi ◽  
Dan Zhao ◽  
Wanjun Jiang ◽  
...  

Groundwater is a critical water resource for human survival and economic development in arid and semi-arid areas. It is crucial to understand the groundwater circulation and hydrochemical evolution for sustainable management and utilization of groundwater resources in those areas. To this end, an investigation of the hydrochemical characteristics of surface water and groundwater was conducted in Nomhon, an arid area located in the Qaidam Basin, northwest China, by using hydrochemical (major and trace elements) and stable isotopes (δD and δ18O) approaches. Stable isotopes and ion ratios were analyzed to determine the recharge sources, hydrochemistry characteristics, and major hydrogeochemical processes. Meanwhile, inverse geochemistry modeling was applied to quantitatively determine the mass transfer of hydrogeochemical processes. The results showed that groundwater in the study area is mainly recharged by atmospheric precipitation in mountainous areas, and the groundwater in the center of basin might originate from ancient water in cold and humid environments. Along the groundwater flow path, the TDS of groundwater increased gradually from fresh to salty (ranging from 462.50 to 19,604.40 mg/L), and the hydrochemical type changed from Cl·HCO3–Na·Mg·Ca to Cl–Na. Groundwater chemical composition and mass balance modeling results indicated that from alluvial fan to lacustrine plain, the main hydrogeochemical processes changed from the dissolution of halite and albite and the precipitation of dolomite and kaolinite to the dissolution of halite and gypsum, precipitation of calcite, redox (SO42− reduction), and cation exchange. This study would be helpful for water resources management in this area and other similar areas.


2012 ◽  
Vol 8 (5) ◽  
pp. 1457-1471 ◽  
Author(s):  
T. J. Daley ◽  
D. Mauquoy ◽  
F. M. Chambers ◽  
F. A. Street-Perrott ◽  
P. D. M. Hughes ◽  
...  

Abstract. Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation, and δD and δ18O-values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record with which to investigate modern relationships between these variables, thereby enabling improved interpretation of the peatland palaeodata. Stable isotope data from two stations in the Global Network for Isotopes in Precipitation (GNIP) from southern South America (Punta Arenas, Chile and Ushuaia, Argentina) were analysed for the period 1982 to 2008 and compared with longer-term meteorological data from the same locations (1890 to present and 1931 to present, respectively). δD and δ18O-values in precipitation have exhibited quite different trends in response to local surface air temperature and precipitation amount. At Punta Arenas, there has been a marked increase in the seasonal difference between summer and winter δ18O-values. A decline in the deuterium excess of summer precipitation at this station was associated with a general increase in relative humidity at 1000 mb over the surface of the Southeast Pacific Ocean, believed to be the major vapour source for the local precipitation. At Ushuaia, a fall in δ18O-values was associated with an increase in the mean annual amount of precipitation. Both records are consistent with a southward retraction and increase in zonal wind speed of the austral westerly wind belt. These regional differences, observed in response to a known driver, should be detectable in peatland sites close to the GNIP stations. Currently, insufficient data with suitable temporal resolution are available to test for these regional differences over the last 3000 yr. Existing peatland palaeoclimate data from two sites near Ushuaia, however, provide evidence for changes in the late Holocene that are consistent with the pattern observed in modern observations.


Diversity ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Samuel Hirt ◽  
Kent Hatch

The use of natural variation in stable isotope ratios continues to be used in ecological studies without proper validation through laboratory studies. This study tested the effects of temperature, time, and turnover in the scales of juvenile corn snakes (Elaphe guttata) in a controlled, laboratory environment. Snakes were assigned to four treatment groups (24 °C, 27 °C, 30 °C, and freely thermoregulating), and one snake from each group was sacrificed weekly. Scales from each snake were washed, dried, and analyzed for δD and δ18O at the Stable Isotope Research Facility for Environmental Research at the University of Utah. The effects of temperature on the turnover of tissues was only significant when comparing the thermoregulating group to the pooled treatment groups (24 °C, 27 °C, and 30 °C) in the δ18O of scales (p = 0.006). After normalizing data on the δD and δ18O using percent change for comparison, δ18O appeared to be turning over at a faster rate than δD as indicated by an analysis of covariance (ANCOVA) test for homogeneity of slopes (F1,53 = 69.7, p < 0.001). With further testing of assumptions, a modification of our methods could provide information on the composition of drinking water sources in a species that switches between two isotopically distinct sources, such as during seasonal shifts in habitat or migration, and/or estimates of long-term field metabolic rates based on the turnover of these isotopes.


2020 ◽  
Author(s):  
Yongyong Zhang ◽  
Wenzhi Zhao ◽  
Chun Zhao

&lt;p&gt;Soil water and groundwater convert frequently under cropland in a desert-oasis transition area, Northwest China. Crops variedly utilize soil water and groundwater during different growth periods under the cropland with shallow groundwater. The study of water exchange process under irrigated cropland has important significance for regulating the contradiction between water saving and groundwater recharge in the desert-oasis transition area. Soil moisture and soil matric potential at depths ranging from 0 to 70 cm were measured using HydraProbe II and TEROS-21 soil sensors in maize (Zea mays L.) fields in 2019. Stable isotope (&amp;#948;&lt;sup&gt;2&lt;/sup&gt;H&amp;#12289;&amp;#948;&lt;sup&gt;18&lt;/sup&gt;O) in different water sources (precipitation, irrigation water, soil water, crop stem, and groundwater) was also measured. The results showed that the groundwater depth varied between 0.57-1.07 m during the maize growth periods. The groundwater depth increased in summer due to the influence of pumped well, while the depth decreased in autumn resulting from the irrigation return water. In the maize growing season, soil moisture and water potential at depths from 10 cm to 30 cm responded to three irrigation times, while soil moisture and water potential below the depth of 50 cm were greater and kept a steady state, which were affected by upward capillary rise of groundwater. The relationship of soil water stable isotope values &amp;#8203;&amp;#8203;was &amp;#948;&lt;sup&gt;2&lt;/sup&gt;H=2.45&amp;#948;&lt;sup&gt;18&lt;/sup&gt;O-31.41, which was lower than the slope of the local atmospheric precipitation line due to the evaporation effect. The soil water stable isotope values at depth of 10 cm varied, while the variation of soil water stable isotope values decreased with the increase of soil depth. The soil water stable isotope values at the depths from 70 to 90cm were close to the groundwater isotope values, which were affected by the groundwater. The stable isotope values in crop stem water were relatively scattered, indicating that the maize used multiple water sources and the water use strategy changed during the growth periods.&lt;/p&gt;


2009 ◽  
Vol 54 (16) ◽  
pp. 2751-2757 ◽  
Author(s):  
NingLian Wang ◽  
ShiBiao Zhang ◽  
JianQiao He ◽  
JianChen Pu ◽  
XiaoBo Wu ◽  
...  

2012 ◽  
Vol 8 (1) ◽  
pp. 595-620 ◽  
Author(s):  
T. J. Daley ◽  
D. Mauquoy ◽  
F. M. Chambers

Abstract. Ombrotrophic raised peatlands provide an ideal archive for integrating late Holocene records of variations in hydroclimate and the estimated stable isotope composition of precipitation with recent instrumental measurements. Modern measurements of mean monthly surface air temperature, precipitation and δD and δ18O values in precipitation from the late twentieth and early twenty-first centuries provide a short but invaluable record with which to investigate modern relationships between these variables, thereby enabling improved interpretation of the peatland palaeodata. Data from two stations in the Global Network for Isotopes in Precipitation (GNIP) from Tierra del Fuego (Punta Arenas, Chile and Ushuaia, Argentina) were analysed for the period 1982 to 2008. In both locations, δD and δ18O values have decreased in response to quite different trends in local surface air temperature and total precipitation amount. At Ushuaia, the fall in δ18O values is associated with an increase in the mean annual amount of precipitation. At Punta Arenas, the fall in δ18O values is weakly associated with decrease in the precipitation amount and an increase in local temperatures. The pattern in both records is consistent with an increase in the zonal intensity of the southern westerly wind belt. These regional differences, observed in response to a known driver, should be detectable in peatland sites close to the GNIP stations. There is currently insufficient availability of suitably temporally resolved data to test for these regional differences over the last 3000 yr. Existing peatland palaeoclimate data from two sites near Ushuaia, however, provide evidence for changes in the late Holocene that are consistent with the pattern observed in modern observations. Furthermore, the records suggest synchroneity in millennial-scale oscillations between the Northern and Southern Hemispheres.


Sign in / Sign up

Export Citation Format

Share Document