Universal stress protein in Malus sieversii confers enhanced drought tolerance

2019 ◽  
Vol 132 (6) ◽  
pp. 825-837
Author(s):  
Meiling Yang ◽  
Shiyou Che ◽  
Yunxiu Zhang ◽  
Hongbin Wang ◽  
Tao Wei ◽  
...  
2012 ◽  
Vol 63 (15) ◽  
pp. 5593-5606 ◽  
Author(s):  
Rachid Loukehaich ◽  
Taotao Wang ◽  
Bo Ouyang ◽  
Khurram Ziaf ◽  
Hanxia Li ◽  
...  

2003 ◽  
Vol 6 (2) ◽  
pp. 140-145 ◽  
Author(s):  
Kristian Kvint ◽  
Laurence Nachin ◽  
Alfredo Diez ◽  
Thomas Nyström

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Qiong Jia ◽  
Xinling Hu ◽  
Dawei Shi ◽  
Yan Zhang ◽  
Meihao Sun ◽  
...  

Abstract The universal stress protein family is a family of stress-induced proteins. Universal stress proteins affect latency and antibiotic resistance in mycobacteria. Here, we showed that Mycobacterium smegmatis overexpressing M. tuberculosis universal stress protein Rv2624c exhibits increased survival in human monocyte THP-1 cells. Transcriptome analysis suggested that Rv2624c affects histidine metabolism, and arginine and proline metabolism. LC-MS/MS analysis showed that Rv2624c affects the abundance of arginine, a modulator of both mycobacteria and infected THP-1 cells. Biochemical analysis showed that Rv2624c is a nucleotide-binding universal stress protein, and an Rv2624c mutant incapable of binding ATP abrogated the growth advantage in THP-1 cells. Rv2624c may therefore modulate metabolic pathways in an ATP-dependent manner, changing the abundance of arginine and thus increasing survival in THP-1 cells.


2009 ◽  
Vol 75 (16) ◽  
pp. 5273-5283 ◽  
Author(s):  
Jérôme Gury ◽  
Hélène Seraut ◽  
Ngoc Phuong Tran ◽  
Lise Barthelmebs ◽  
Stéphanie Weidmann ◽  
...  

ABSTRACT The phenolic acid decarboxylase gene padA is involved in the phenolic acid stress response (PASR) in gram-positive bacteria. In Lactobacillus plantarum, the padR gene encodes the negative transcriptional regulator of padA and is cotranscribed with a downstream gene, usp1, which encodes a putative universal stress protein (USP), Usp1, of unknown function. The usp1 gene is overexpressed during the PASR. However, the role and the mechanism of action of the USPs are unknown in gram-positive bacteria. Therefore, to gain insights into the role of USPs in the PASR; (i) a usp1 deletion mutant was constructed; (ii) the two genes padR and usp1 were coexpressed with padA under its own promoter as a reporter gene in Escherichia coli; and (iii) molecular in vitro interactions between the PadR, Usp1, and the padA promoter were studied. Although the usp1 mutant strain retained phenolic acid-dependent PAD activity, it displayed a greater sensitivity to strong acidic conditions compared to that of the wild-type strain. PadR cannot be inactivated directly by phenolic acid in E. coli recombinant cultures but is inactivated by Usp1 when the two proteins are coexpressed in E. coli. The PadR inactivation observed in recombinant E. coli cells was supported by electrophoretic mobility shift assays. Although Usp1 seems not to be absolutely required for the PASR, its capacity to inactivate PadR indicates that it could serve as an important mediator in acid stress response mechanisms through its capacity to interact with transcriptional regulators.


Sign in / Sign up

Export Citation Format

Share Document