scholarly journals Universal stress protein Rv2624c alters abundance of arginine and enhances intracellular survival by ATP binding in mycobacteria

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Qiong Jia ◽  
Xinling Hu ◽  
Dawei Shi ◽  
Yan Zhang ◽  
Meihao Sun ◽  
...  

Abstract The universal stress protein family is a family of stress-induced proteins. Universal stress proteins affect latency and antibiotic resistance in mycobacteria. Here, we showed that Mycobacterium smegmatis overexpressing M. tuberculosis universal stress protein Rv2624c exhibits increased survival in human monocyte THP-1 cells. Transcriptome analysis suggested that Rv2624c affects histidine metabolism, and arginine and proline metabolism. LC-MS/MS analysis showed that Rv2624c affects the abundance of arginine, a modulator of both mycobacteria and infected THP-1 cells. Biochemical analysis showed that Rv2624c is a nucleotide-binding universal stress protein, and an Rv2624c mutant incapable of binding ATP abrogated the growth advantage in THP-1 cells. Rv2624c may therefore modulate metabolic pathways in an ATP-dependent manner, changing the abundance of arginine and thus increasing survival in THP-1 cells.

2019 ◽  
Vol 295 (6) ◽  
pp. 1500-1516 ◽  
Author(s):  
Sintu Samanta ◽  
Priyanka Biswas ◽  
Arka Banerjee ◽  
Avipsa Bose ◽  
Nida Siddiqui ◽  
...  

Universal stress proteins (USPs) are present in many bacteria, and their expression is enhanced under various environmental stresses. We have previously identified a USP in Mycobacterium smegmatis that is a product of the msmeg_4207 gene and is a substrate for a cAMP-regulated protein lysine acyltransferase (KATms; MSMEG_5458). Here, we explored the role of this USP (USP4207) in M. smegmatis and found that its gene is present in an operon that also contains genes predicted to encode a putative tripartite tricarboxylate transporter (TTT). Transcription of the TTT-usp4207 operon was induced in the presence of citrate and tartrate, perhaps by the activity of a divergent histidine kinase-response regulator gene pair. A usp4207-deleted strain had rough colony morphology and reduced biofilm formation compared with the WT strain; however, both normal colony morphology and biofilm formation were restored in a Δusp4207Δkatms strain. We identified several proteins whose acetylation was lost in the Δkatms strain, and whose transcript levels increased in M. smegmatis biofilms along with that of USP4207, suggesting that USP4207 insulates KATms from its other substrates in the cell. We propose that USP4207 sequesters KATms from diverse substrates whose activities are down-regulated by acylation but are required for biofilm formation, thus providing a defined role for this USP in mycobacterial physiology and stress responses.


2021 ◽  
Vol 9 (8) ◽  
pp. 1780
Author(s):  
Raphael D. Isokpehi ◽  
Dominique S. McInnis ◽  
Antoinette M. Destefano ◽  
Gabrielle S. Johnson ◽  
Akimio D. Walker ◽  
...  

The presence of methylmercury in aquatic environments and marine food sources is of global concern. The chemical reaction for the addition of a methyl group to inorganic mercury occurs in diverse bacterial taxonomic groups including the Gram-negative, sulfate-reducing Desulfovibrionaceae family that inhabit extreme aquatic environments. The availability of whole-genome sequence datasets for members of the Desulfovibrionaceae presents opportunities to understand the microbial mechanisms that contribute to methylmercury production in extreme aquatic environments. We have applied bioinformatics resources and developed visual analytics resources to categorize a collection of 719 putative universal stress protein (USP) sequences predicted from 93 genomes of Desulfovibrionaceae. We have focused our bioinformatics investigations on protein sequence analytics by developing interactive visualizations to categorize Desulfovibrionaceae universal stress proteins by protein domain composition and functionally important amino acids. We identified 651 Desulfovibrionaceae universal stress protein sequences, of which 488 sequences had only one USP domain and 163 had two USP domains. The 488 single USP domain sequences were further categorized into 340 sequences with ATP-binding motif and 148 sequences without ATP-binding motif. The 163 double USP domain sequences were categorized into (1) both USP domains with ATP-binding motif (3 sequences); (2) both USP domains without ATP-binding motif (138 sequences); and (3) one USP domain with ATP-binding motif (21 sequences). We developed visual analytics resources to facilitate the investigation of these categories of datasets in the presence or absence of the mercury-methylating gene pair (hgcAB). Future research could utilize these functional categories to investigate the participation of universal stress proteins in the bacterial cellular uptake of inorganic mercury and methylmercury production, especially in anaerobic aquatic environments.


2003 ◽  
Vol 185 (5) ◽  
pp. 1543-1554 ◽  
Author(s):  
Ronan O'Toole ◽  
Marjan J. Smeulders ◽  
Marian C. Blokpoel ◽  
Emily J. Kay ◽  
Kathryn Lougheed ◽  
...  

ABSTRACT We identified a response regulator in Mycobacterium smegmatis which plays an important role in adaptation to oxygen-starved stationary phase. The regulator exhibits strong sequence similarity to DevR/Rv3133c of M. tuberculosis. The structural gene is present on a multigene locus, which also encodes a sensor kinase. A devR mutant of M. smegmatis was adept at surviving growth arrest initiated by either carbon or nitrogen starvation. However, its culturability decreased several orders of magnitude below that of the wild type under oxygen-starved stationary-phase conditions. Two-dimensional gel analysis revealed that a number of oxygen starvation-inducible proteins were not expressed in the devR mutant. Three of these proteins are universal stress proteins, one of which is encoded directly upstream of devR. Another protein closely resembles a proposed nitroreductase, while a fifth protein corresponds to the α-crystallin (HspX) orthologue of M. smegmatis. None of the three universal stress proteins or nitroreductase, and a considerably lower amount of HspX was detected in carbon-starved wild-type cultures. A fusion of the hspX promoter to gfp demonstrated that DevR directs gene expression when M. smegmatis enters stationary phase brought about, in particular, by oxygen starvation. To our knowledge, this is the first time a role for a two-component response regulator in the control of universal stress protein expression has been shown. Notably, the devR mutant was 104-fold more sensitive than wild type to heat stress. We conclude that DevR is a stationary-phase regulator required for adaptation to oxygen starvation and resistance to heat stress in M. smegmatis.


Author(s):  
Mozhgan Ghorbani ◽  
Atefeh Araghi ◽  
Nabi Shariatifar ◽  
Seyed Hooman Mirbaha ◽  
Behrokh Marzban Abbasabadi ◽  
...  

Aims: The aim of this study was to investigate the toxic effect of Echium amoenum plants on the liver and kidney of animal model. Background: Echium amoenum is one of the medicinal plants containing pyrrolizidine alkaloids with several properties which has widely consumed among different communities. Objective: The toxic effects of Echium amoenum on the liver and kidney were investigated in this study. Methods: Sixty mice were kept for 28 days under the appropriate laboratory conditions. Echium amoenum extract (25, 12.5, 50 mg / kg, ip.) was administered for 28 days. At the end of experiment, blood samples were drawn and liver and kidneys were removed for evaluating hepatotoxicity and nephrotoxicity of extract. Additionally, experiments were conducted to assay the enzymatic and oxidative activities. Results: There was no significant difference in the levels of copper ion in the liver and kidneys among all groups. There was a significant difference in the levels of lipid peroxidation in the liver of treated groups versus control group. The significant difference was not observed in the levels of glutathione of the liver of all groups. However, the levels of glutathione of the kidney significantly decreased in the treated groups versus control group. There was no significant difference in the liver enzymes including ALP, SGOT, and SGPT between all groups. This indicates that damage increase with enhancing the time and concentrations of extract. Biochemical analysis showed the creatinine and urea levels did not change in the treated groups versus control group. Conclusion: According to the present findings, it is suggested that Echium amoenum causes hepatotoxicity and nephrotoxicity effects in dose and time dependent manner.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 832
Author(s):  
Mohammad Mirazul Islam ◽  
Dina B. AbuSamra ◽  
Alexandru Chivu ◽  
Pablo Argüeso ◽  
Claes H. Dohlman ◽  
...  

Collagen scaffolds, one of the most used biomaterials in corneal tissue engineering, are frequently crosslinked to improve mechanical properties, enzyme tolerance, and thermal stability. Crosslinkers such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) are compatible with tissues but provide low crosslinking density and reduced mechanical properties. Conversely, crosslinkers such as glutaraldehyde (GTA) can generate mechanically more robust scaffolds; however, they can also induce greater toxicity. Herein, we evaluated the effectivity of double-crosslinking with both EDC and GTA together with the capability of sodium metabisulfite (SM) and sodium borohydride (SB) to neutralize the toxicity and restore biocompatibility after crosslinking. The EDC-crosslinked collagen scaffolds were treated with different concentrations of GTA. To neutralize the free unreacted aldehyde groups, scaffolds were treated with SM or SB. The chemistry involved in these reactions together with the mechanical and functional properties of the collagen scaffolds was evaluated. The viability of the cells grown on the scaffolds was studied using different corneal cell types. The effect of each type of scaffold treatment on human monocyte differentiation was evaluated. One-way ANOVA was used for statistical analysis. The addition of GTA as a double-crosslinking agent significantly improved the mechanical properties and enzymatic stability of the EDC crosslinked collagen scaffold. GTA decreased cell biocompatibility but this effect was reversed by treatment with SB or SM. These agents did not affect the mechanical properties, enzymatic stability, or transparency of the double-crosslinked scaffold. Contact of monocytes with the different scaffolds did not trigger their differentiation into activated macrophages. Our results demonstrate that GTA improves the mechanical properties of EDC crosslinked scaffolds in a dose-dependent manner, and that subsequent treatment with SB or SM partially restores biocompatibility. This novel manufacturing approach would facilitate the translation of collagen-based artificial corneas to the clinical setting.


1988 ◽  
Vol 106 (4) ◽  
pp. 1105-1116 ◽  
Author(s):  
L A Mizzen ◽  
W J Welch

Exposure of mammalian cells to a nonlethal heat-shock treatment, followed by a recovery period at 37 degrees C, results in increased cell survival after a subsequent and otherwise lethal heat-shock treatment. Here we characterize this phenomenon, termed acquired thermotolerance, at the level of translation. In a number of different mammalian cell lines given a severe 45 degrees C/30-min shock and then returned to 37 degrees C, protein synthesis was completely inhibited for as long as 5 h. Upon resumption of translational activity, there was a marked induction of heat-shock (or stress) protein synthesis, which continued for several hours. In contrast, cells first made thermotolerant (by a pretreatment consisting of a 43 degrees C/1.5-h shock and further recovery at 37 degrees C) and then presented with the 45 degrees C/30-min shock exhibited considerably less translational inhibition and an overall reduction in the amount of subsequent stress protein synthesis. The acquisition and duration of such "translational tolerance" was correlated with the expression, accumulation, and relative half-lives of the major stress proteins of 72 and 73 kD. Other agents that induce the synthesis of the stress proteins, such as sodium arsenite, similarly resulted in the acquisition of translational tolerance. The probable role of the stress proteins in the acquisition of translational tolerance was further indicated by the inability of the amino acid analogue, L-azetidine 2-carboxylic acid, an inducer of nonfunctional stress proteins, to render cells translationally tolerant. If, however, analogue-treated cells were allowed to recover in normal medium, and hence produce functional stress proteins, full translational tolerance was observed. Finally, we present data indicating that the 72- and 73-kD stress proteins, in contrast to the other major stress proteins (of 110, 90, and 28 kD), are subject to strict regulation in the stressed cell. Quantitation of 72- and 73-kD synthesis after heat-shock treatment under a number of conditions revealed that "titration" of 72/73-kD synthesis in response to stress may represent a mechanism by which the cell monitors its local growth environment.


1994 ◽  
Vol 3 (2) ◽  
pp. 143-148 ◽  
Author(s):  
S. Baladi ◽  
S. Kantengwa ◽  
Y. R. A. Donati ◽  
B. S. Polla

The effects of the bacterial extract OM-85 on the respiratory burst, intracellular calcium and the stress response have been investigated in human peripheral blood monocytes from normal donors. Activation of the respiratory burst during bacterial phagocytosis has been previously associated with heat shock/stress proteins synthesis. Whereas OM-85 stimulated superoxide production and increased Ca2+mobilization, it fared to induce synthesis of classical HSPs. The lack of stress protein induction was observed even in the presence of iron which potentiates both oxidative injury and stress protein induction during bacterial phagocytosis. However OM-85 induced a 75–78 kDa protein, which is likely to be a glucose regulated protein (GRP78), and enhanced intracellular expression of interleukin-lβ precursor.


1984 ◽  
Vol 4 (8) ◽  
pp. 1534-1541
Author(s):  
C N White ◽  
L E Hightower

Four major chicken stress mRNAs with apparent molecular weights of 1.2 X 10(6), 0.88 X 10(6), 0.59 X 10(6), and 0.25 X 10(6) to 0.28 X 10(6) were separated on acidic agarose-urea gels. Using cell-free translation, the coding assignments of these mRNAs were determined to be stress proteins with apparent molecular weights of 88,000, 71,000, 35,000, and 23,000. Despite high levels of translational activity in vivo and in vitro, no newly synthesized mRNA for the 23-kilodalton stress protein was detected on gels under conditions which readily allowed detection of other stress mRNAs, suggesting activation of a stored or incompletely processed mRNA. Cloned Drosophila heat shock genes were used to identify and measure changes in cellular levels of the two largest stress mRNAs. Synthesis of these mRNAs increased rapidly during the first hour of canavanine treatment and continued at a high rate for at least 7 h, with the mRNAs attaining new steady-state levels by ca. 3 h. Both of these inducible stress mRNAs had very short half-lives compared with other animal cell mRNAs. Using an approach-to-steady-state analysis, the half-lives were calculated to be 89 min for the mRNA encoding the 88-kilodalton stress protein and 46 min for the mRNA encoding the 71-kilodalton stress protein. Chicken 18S and 28S rRNA synthesis was inhibited, and actin mRNA levels measured with cloned cDNA encoding chicken beta-actin slowly declined in canavanine-treated cells.


Sign in / Sign up

Export Citation Format

Share Document