Regulation of defense responses via heat shock transcription factors in Cucumis sativus L. against Botrytis cinerea

Author(s):  
Agung Dian Kharisma ◽  
Nur Akbar Arofatullah ◽  
Kenji Yamane ◽  
Sayuri Tanabata ◽  
Tatsuo Sato
2018 ◽  
Author(s):  
Peter Chisnell ◽  
T. Richard Parenteau ◽  
Elizabeth Tank ◽  
Kaveh Ashrafi ◽  
Cynthia Kenyon

AbstractThe widely conserved heat-shock response, regulated by heat shock transcription factors, is not only essential for cellular stress resistance and adult longevity, but also for proper development. However, the genetic mechanisms by which heat-shock transcription factors regulate development are not well understood. In C. elegans, we conducted an unbiased genetic screen to identify mutations that could ameliorate the developmental arrest phenotype of a heat-shock factor mutant. Here we show that loss of the conserved translational activator rsks-1/S6-Kinase, a downstream effector of TOR kinase, can rescue the developmental-arrest phenotype of hsf-1 partial loss-of-function mutants. Unexpectedly, we show that the rescue is not likely caused by reduced translation, nor to activation of any of a variety of stress-protective genes and pathways. Our findings identify an as-yet unexplained regulatory relationship between the heat-shock transcription factor and the TOR pathway during C. elegans’ development.


2006 ◽  
Vol 405 (3) ◽  
pp. 191-195 ◽  
Author(s):  
Jacky M.K. Kwong ◽  
Maziar Lalezary ◽  
Jessica K. Nguyen ◽  
Christine Yang ◽  
Anuj Khattar ◽  
...  

2012 ◽  
Vol 11 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Mioko Yoshino ◽  
Ani Widiastuti ◽  
Zhou Songying ◽  
Hiromitsu Odani ◽  
Morifumi Hasegawa ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1157 ◽  
Author(s):  
Yan Li ◽  
Wencai Yu ◽  
Yueyi Chen ◽  
Shuguang Yang ◽  
Shaohua Wu ◽  
...  

Heat-shock transcription factors (Hsfs) play a pivotal role in the response of plants to various stresses. The present study aimed to characterize the Hsf genes in the rubber tree, a primary global source of natural rubber. In this study, 30 Hsf genes were identified in the rubber tree using genome-wide analysis. They possessed a structurally conserved DNA-binding domain and an oligomerization domain. On the basis of the length of the insert region between HR-A and HR-B in the oligomerization domain, the 30 members were clustered into three classes, Classes A (18), B (10), and C (2). Members within the same class shared highly conserved gene structures and protein motifs. The background expression levels of 11 genes in cold-tolerant rubber-tree clone 93-14 were significantly higher than those in cold-sensitive rubber-tree clone Reken501, while four genes exhibited inverse expression patterns. Upon cold stress, 20 genes were significantly upregulated in 93-114. Of the upregulated genes, HbHsfA2b, HbHsfA3a, and HbHsfA7a were also significantly upregulated in three other cold-tolerant rubber-tree clones at one or more time intervals upon cold stress. Their nuclear localization was verified, and the protein–protein interaction network was predicted. This study provides a basis for dissecting Hsf function in the enhanced cold tolerance of the rubber tree.


Sign in / Sign up

Export Citation Format

Share Document