SWAT modeling of best management practices for Chungju dam watershed in South Korea under future climate change scenarios

2014 ◽  
Vol 12 (S1) ◽  
pp. 65-75 ◽  
Author(s):  
Jong-Yoon Park ◽  
Young-Seok Yu ◽  
Soon-Jin Hwang ◽  
Chulgoo Kim ◽  
Seong-Joon Kim
2017 ◽  
Vol 60 (3) ◽  
pp. 769-782 ◽  
Author(s):  
Jaison Renkenberger ◽  
Hubert Montas ◽  
Paul T. Leisnham ◽  
Victoria Chanse ◽  
Adel Shirmohammadi ◽  
...  

Abstract. The potential impacts of climate change on BMP effectiveness were investigated using SWAT simulations for an agricultural watershed that drains into the Chesapeake Bay in the U.S. Northeast climate region. Critical source areas (CSAs) for sediments, nitrogen, and phosphorus, identified for current and future climate (SRES scenarios A1B and A2), were classified by density to support BMP prioritization schemes. BMPs were designed for these CSAs and tested against current and future climate using SWAT simulations to evaluate their robustness. A second set of BMPs was designed by optimization for all agricultural and urban lands in the study watershed and was similarly tested for robustness. In both cases, the design goal was for the watershed’s water quality response to meet the bay TMDLs once BMPs were implemented. Results indicated that density 2 and 3 CSAs (hotspots exporting excess amounts of 2 or 3 constituents) may be good prioritization targets, but reaching the bay TMDLs would still require targeting all CSAs. BMPs designed for CSAs under current climate were effective to reach bay TMDLs under current climate but not under scenarios A1B and A2. BMPs designed for CSAs under scenario A2 were effective to reach the bay TMDLs under all climates, except for nitrogen under A2. Similarly, BMPs optimized for agricultural and urban lands, when designed for current climate, were effective in meeting TMDLs for current climate only. Optimizing these BMPs for future climate produced a design that met TMDLs under both current and future climates, except for nitrogen with future climate. However, in this case, the nitrogen TMDL was exceeded by a smaller amount than in the CSA design. It was concluded that, in the U.S. Northeast, BMPs designed to remediate water quality problems under current climate will be insufficient to maintain water quality with climate change. Increased annual rainfall and storm intensity will increase the proportion of watershed area needing BMPs, and current hotspots will generate excess amounts of new constituents that will require re-design of existing BMPs. Community-based participatory strategies will likely be required to foster BMP adoption and sustain water quality gains in the Chesapeake Bay region. Keywords: BMPs, Best management practices, Climate change, NPS pollution, SWAT model, Water quality, Watershed hydrology.


2010 ◽  
Vol 148 (6) ◽  
pp. 683-694 ◽  
Author(s):  
A. P. BARNES ◽  
A. WREFORD ◽  
M. H. BUTTERWORTH ◽  
M. A. SEMENOV ◽  
D. MORAN ◽  
...  

SUMMARYVarious adaptation strategies are available that will minimize or negate predicted climate change-related increases in yield loss from phoma stem canker in UK winter oilseed rape (OSR) production. A number of forecasts for OSR yield, national production and subsequent economic values are presented, providing estimates of impacts on both yield and value for different levels of adaptation. Under future climate change scenarios, there will be increasing pressure to maintain yields at current levels. Losses can be minimized in the short term (up to the 2020s) with a ‘low’-adaptation strategy, which essentially requires some farmer-led changes towards best management practices. However, the predicted impacts of climate change can be negated and, in most cases, improved upon, with ‘high’-adaptation strategies. This requires increased funding from both the public and private sectors and more directed efforts at adaptation from the producer. Most literature on adaptation to climate change has had a conceptual focus with little quantification of impacts. It is argued that quantifying the impacts of adaptation is essential to provide clearer information to guide policy and industry approaches to future climate change risk.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2125
Author(s):  
Jaenam Lee ◽  
Hyungjin Shin

Drought has been frequently occurring in South Korea due to climate change. Analyzing the water supply capacity of the water resource system provides essential information for water resource management. This study evaluates the future water supply capacity of the Gwanghye (GH) agricultural reservoir based on the representative concentration pathways 4.5 and 8.5 climate change scenarios. We performed a reservoir simulation by reflecting the full water level of the reservoir before and after reservoir heightening. Climate change is expected to decrease the GH reservoir’s future available water resources due to the overall reduction in the reservoir’s runoff. After the reservoir-heightening project, an overall improvement was observed in the stability of the future irrigation water supply. Moreover, the remaining water after the supply of the irrigation water could supply 0.6–7.2 × 103 m3 of daily instream water. Thus, flexible reservoir operations are necessary according to climate change scenarios and the reservoir operation period. The use of climate change information should be expanded to establish reasonable water management policies for future climate change scenarios.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


Author(s):  
Hevellyn Talissa dos Santos ◽  
Cesar Augusto Marchioro

Abstract The small tomato borer, Neoleucinodes elegantalis (Guenée, 1854) is a multivoltine pest of tomato and other cultivated solanaceous plants. The knowledge on how N. elegantalis respond to temperature may help in the development of pest management strategies, and in the understanding of the effects of climate change on its voltinism. In this context, this study aimed to select models to describe the temperature-dependent development rate of N. elegantalis and apply the best models to evaluate the impacts of climate change on pest voltinism. Voltinism was estimated with the best fit non-linear model and the degree-day approach using future climate change scenarios representing intermediary and high greenhouse gas emission rates. Two out of the six models assessed showed a good fit to the observed data and accurately estimated the thermal thresholds of N. elegantalis. The degree-day and the non-linear model estimated more generations in the warmer regions and fewer generations in the colder areas, but differences of up to 41% between models were recorded mainly in the warmer regions. In general, both models predicted an increase in the voltinism of N. elegantalis in most of the study area, and this increase was more pronounced in the scenarios with high emission of greenhouse gases. The mathematical model (74.8%) and the location (9.8%) were the factors that mostly contributed to the observed variation in pest voltinism. Our findings highlight the impact of climate change on the voltinism of N. elegantalis and indicate that an increase in its population growth is expected in most regions of the study area.


Sign in / Sign up

Export Citation Format

Share Document