Revealing the Effects of Pore Size and Geometry on the Mechanical Properties of Graphene Nanopore Using the Atomistic Finite Element Method

2018 ◽  
Vol 32 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Prapasiri Pongprayoon ◽  
Attaphon Chaimanatsakun
2018 ◽  
Vol 934 ◽  
pp. 24-29
Author(s):  
Prapasiri Pongprayoon ◽  
Attaphon Chaimanatsakun

Graphene nanopore has been widely employed in nanofilter or nanopore devices due to its outstanding properties. The understanding of its mechanical properties at nanoscale is crucial for device improvement. In this work, the mechanical properties of graphene nanopore is thus investigated using atomistic finite element method (AFEM). Four graphene models with different pore shapes (circular (CR), horizontal rectangle (RH), and vertical rectangle (RV)) in sub-nm size which could be successfully fabricated experimentally have been studied here. The force normal to a pore surface is applied to mimic the impact force due to a fluid flow. Increasing pore size results in the reduction in its strength. Comparing among different pore shapes with comparable sizes, the order of pore strength is CR>RH>RV>SQ. In addition, we observe that the direction of pore alignment and geometries of pore edge also play a key role in mechanical strength of nanopores.


2022 ◽  
Vol 12 (2) ◽  
pp. 575
Author(s):  
Guangying Liu ◽  
Ran Guo ◽  
Kuiyu Zhao ◽  
Runjie Wang

The existence of pores is a very common feature of nature and of human life, but the existence of pores will alter the mechanical properties of the material. Therefore, it is very important to study the impact of different influencing factors on the mechanical properties of porous materials and to use the law of change in mechanical properties of porous materials for our daily lives. The SBFEM (scaled boundary finite element method) method is used in this paper to calculate a large number of random models of porous materials derived from Matlab code. Multiple influencing factors can be present in these random models. Based on the Monte Carlo simulation, after a large number of model calculations were carried out, the results of the calculations were analyzed statistically in order to determine the variation law of the mechanical properties of porous materials. Moreover, this paper gives fitting formulas for the mechanical properties of different materials. This is very useful for researchers estimating the mechanical properties of porous materials in advance.


2020 ◽  
Vol 841 ◽  
pp. 327-334
Author(s):  
Dhiwakar S. Ram ◽  
P.N. Bharath Kumar ◽  
R. Sandeep Kumar ◽  
B. Vijaya Ramnath

Natural Fibre composites are being widely used as a replacement to non-bio-degradable polymer composites. The unavailability of proper processes to treat the natural fibres and the errors in fabrication result in less accurate mechanical properties. The accuracy that is obtained by machine-based processes is not possible in Hand layup method, which is employed in fabrication of natural fibre composites. Finite Element method packages which are specially intended in modelling composite structures give more accurate result of properties than experimental setup, by avoiding fabrication errors. This paper evaluates Impact energy and then the tensile strength, flexural strength of a sugarcane fibre GFRP reinforced polymer matrix both by conventional Hand Layup method and also by Finite Element method.


2019 ◽  
Vol 109 ◽  
pp. 00093 ◽  
Author(s):  
Olena Slashchova ◽  
Ihor Slashchov ◽  
Iryna Sapunova

The article is devoted to development of methods for geofiltration calculations with taking into account peculiarities of changes of the rock physical and mechanical properties at water saturation. Methods: mathematical modeling of geomechanical and filtration processes with the help of finite element method and laboratory and underground studies. A mathematical model was formulated for solving a problem of elasticity theory by the finite element method, which took into account peculiarities of water-saturated rocks. Pattern of stress-strain state changing in the fractured water-saturated rocks under the action of critical loads, which occurred around the preparatory roadways during their operation, were established. In order to solve the filtration problems, a bank of collected initial data on physical and mechanical properties of water-saturated rocks was processed with the help of variation coefficients, which were taken into account by the method, which assumed calculation of the model loading with critical parameters.


Sign in / Sign up

Export Citation Format

Share Document