scholarly journals Correction to: Efficacy and safety of Eradicat® feral cat baits in eastern Australia: population impacts of baiting programmes on feral cats and non-target mammals and birds

Author(s):  
Bronwyn A. Fancourt ◽  
Glen Harry ◽  
James Speed ◽  
Matthew N. Gentle
2007 ◽  
Vol 29 (1) ◽  
pp. 77 ◽  
Author(s):  
M.J. Johnston ◽  
M.J. Shaw ◽  
A. Robley ◽  
N.K. Schedvin

Management of feral cat (Felis catus) populations is currently limited by the lack of a control technique that is cost-effective, target-specific and suitable for broad-scale application. This paper describes two non-toxic bait acceptance trials undertaken on French Island in Western Port, Victoria in south?eastern Australia. Moist meat baits were injected with the marker Rhodamine B (RB), and surface distributed along the existing road and firebreak network. Subsequent trapping of feral cats facilitated collection of whiskers, which were analysed using ultraviolet fluorescence microscopy for the presence of RB marking. Twenty-four and forty-seven cats respectively were recovered in each trial with fifty per cent of these individuals found to have consumed at least one bait in either trial. Results are discussed with reference to the development of a felid-specific toxicant baiting technique.


1985 ◽  
Vol 12 (3) ◽  
pp. 425 ◽  
Author(s):  
NP Brothers ◽  
IJ Skira ◽  
GR Copson

246 feral cats were shot on Macquarie Island, Australia, between Dec. 1976 and Feb. 1981. The sex ratio ( males : females ) was 1:0.8. The percentages of animals with tabby, orange and black coats were 74, 26 and 2 resp. [sic]. Of the 64 orange cats, 56 were males . The breeding season was Oct.-Mar., with a peak in Nov.-Dec. The number of embryos in the 14 pregnant females averaged 4.7 (range = 1-9). The size of the 23 litters that were observed averaged 3 (range = 1-8). Kitten survival to 6 months of age was estimated to be <43%.


2020 ◽  
Author(s):  
Sarara Azumi ◽  
Yuya Watari ◽  
Nariko Oka ◽  
Tadashi Miyashita

Abstract Understanding how invasive predators impact native species is essential for the development of effective control strategies, especially in insular environments where alternative non-native prey species exist. We examined seasonal and spatial shifts in diet of feral cat Felis silvestris catus focusing on the predation on native streaked shearwaters, Calonectris leucomelas, and introduced rats, Rattus rattus and R. norvegicus, which are alternative prey to shearwaters, on Mikura Island, Japan. Streaked shearwaters breed at low elevations on the island from spring to autumn, whereas rats inhabit the island throughout the year, which makes them an alternative prey when native shearwaters are absent. Fecal analysis revealed that feral cats dramatically shifted their diets from introduced rats in winter to streaked shearwaters in seabird-season in low elevation areas of the island, while cats preyed on rats throughout the year at high altitudes on the island. This finding suggests that feral cats selectively prey on shearwaters. This is probably because of their large body size and less cautious behavior, and because introduced rats sustain the cat population when shearwaters are absent. The number of streaked shearwaters killed was estimated to be 313 individuals per cat per year, which represents an indication of top-down effects of feral cats on streaked shearwaters. Further studies on the demographic parameters and interspecific interactions of the three species are required to enable effective cat management for the conservation of streaked shearwaters on this island.


2012 ◽  
Vol 18 (4) ◽  
pp. 293 ◽  
Author(s):  
Seth Judge ◽  
Jill S Lippert ◽  
Kathleen Misajon ◽  
Darcy Hu ◽  
Steven C Hess

Feral cats (Felis catus) have long been implicated as nest predators of endangered ‘Ua‘u (Hawaiian Petrel; Pterodroma sandwichensis) on Hawai‘i Island, but until recently, visual confirmation has been limited by available technology. ‘Ua‘u nest out of view, deep inside small cavities, on alpine lava flows. During the breeding seasons of 2007 and 2008, we monitored known burrows within Hawai‘i Volcanoes National Park. Digital infrared video cameras assisted in determining the breeding behaviour and nesting success at the most isolated of burrows. With 7 cameras, we collected a total of 819 videos and 89 still photographs of adult and nestling ‘Ua‘u at 14 burrows. Videos also confirmed the presence of rats (Rattus spp.) at 2 burrows, ‘Ôma‘o (Myadestes obscurus) at 8 burrows, and feral cats at 6 burrows. A sequence of videos showed a feral cat taking a downy ‘Ua‘u chick from its burrow, representing the first direct evidence of ‘Ua‘u depredation by feral cat in Hawai‘i. This technique provides greater understanding of feral cat behaviour in ‘Ua’u colonies, which may assist in the development of more targeted management strategies to reduce nest predation on endangered insular bird species.


2019 ◽  
Vol 46 (5) ◽  
pp. 378 ◽  
Author(s):  
Patrick L. Taggart ◽  
Bronwyn A. Fancourt ◽  
Andrew J. Bengsen ◽  
David E. Peacock ◽  
Patrick Hodgens ◽  
...  

Context Feral cats (Felis catus) impact the health and welfare of wildlife, livestock and humans worldwide. They are particularly damaging where they have been introduced into island countries such as Australia and New Zealand, where native prey species evolved without feline predators. Kangaroo Island, in South Australia, is Australia’s third largest island and supports several threatened and endemic species. Cat densities on Kangaroo Island are thought to be greater than those on the adjacent South Australian mainland, based on one cat density estimate on the island that is higher than most estimates from the mainland. The prevalence of cat-borne disease in cats and sheep is also higher on Kangaroo Island than the mainland, suggesting higher cat densities. A recent continental-scale spatial model of cat density predicted that cat density on Kangaroo Island should be about double that of the adjacent mainland. However, although cats are believed to have severe impacts on some native species on the island, other species that are generally considered vulnerable to cat predation have relatively secure populations on the island compared with the mainland. Aims The present study aimed to compare feral cat abundance between Kangaroo Island and the adjacent South Australian mainland using simultaneous standardised methods. Based on previous findings, we predicted that the relative abundance of feral cats on Kangaroo Island would be approximately double that on the South Australian mainland. Methods Standardised camera trap surveys were used to simultaneously estimate the relative abundance of feral cats on Kangaroo Island and the adjacent South Australian mainland. Survey data were analysed using the Royle–Nichols abundance-induced heterogeneity model to estimate feral cat relative abundance at each site. Key results Cat abundance on the island was estimated to be over 10 times greater than that on the adjacent mainland. Conclusions Consistent with predictions, cat abundance on the island was greater than on the adjacent mainland. However, the magnitude of this difference was much greater than expected. Implications The findings show that the actual densities of cats at local sites can vary substantially from predictions generated by continental-scale models. The study also demonstrates the value of estimating abundance or density simultaneously across sites using standardised methods.


2018 ◽  
Vol 45 (6) ◽  
pp. 518 ◽  
Author(s):  
Jaime Heiniger ◽  
Skye F. Cameron ◽  
Graeme Gillespie

Context Feral cats are a significant threat to native wildlife and broad-scale control is required to reduce their impacts. Two toxic baits developed for feral cats, Curiosity® and Hisstory®, have been designed to reduce the risk of baiting to certain non-target species. These baits involve encapsulating the toxin within a hard-shelled delivery vehicle (HSDV) and placing it within a meat attractant. Native animals that chew their food more thoroughly are predicted to avoid poisoning by eating around the HSDV. This prediction has not been tested on wild native mammals in the monsoonal wet–dry tropics of the Northern Territory. Aim The aim of this research was to determine whether northern quolls (Dasyurus hallucatus) and northern brown bandicoots (Isoodon macrourus) would take feral cat baits and ingest the HSDV under natural conditions on Groote Eylandt. Methods We hand-deployed 120 non-toxic baits with a HSDV that contained a biomarker, Rhodamine B, which stains animal whiskers when ingested. The species responsible for bait removal was determined with camera traps, and HSDV ingestion was measured by evaluating Rhodamine B in whiskers removed from animals trapped after baiting. Key results During field trials, 95% of baits were removed within 5 days. Using camera-trap images, we identified the species responsible for taking baits on 65 occasions. All 65 confirmed takes were by native species, with northern quolls taking 42 baits and northern brown bandicoots taking 17. No quolls and only one bandicoot ingested the HSDV. Conclusion The use of the HSDV reduces the potential for quolls and bandicoots to ingest a toxin when they consume feral cat baits. However, high bait uptake by non-target species may reduce the efficacy of cat baiting in some areas. Implications The present study highlighted that in the monsoonal wet–dry tropics, encapsulated baits are likely to minimise poisoning risk to certain native species that would otherwise eat meat baits. However, further research may be required to evaluate risks to other non-target species. Given the threat to biodiversity from feral cats, we see it as critical to continue testing Hisstory® and Curiosity® in live-baiting trials in northern Australia.


2000 ◽  
Vol 27 (2) ◽  
pp. 143 ◽  
Author(s):  
G. P. Edwards ◽  
N. D. de Preu ◽  
B. J. Shakeshaft ◽  
I. V. Crealy

We evaluated the efficacy of spotlight surveys and passive track surveys conducted along roads for assessing the relative abundance of feral cats and dingoes in a semi-arid rangeland environment in central Australia. Track surveys were more time-efficient than spotlight surveys and offered higher precision. We cover a range of issues that need to be considered when using track-based surveys to assess population change. We also discuss the merits of other techniques used to monitor the abundance of mammalian carnivores.


Sign in / Sign up

Export Citation Format

Share Document